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INTRODUCTION. 

The aim of the present lectures is to show the reader why the Minkowski space-time 
is not satisfactory for particle theory. Although the text corresponds to a critical work on 
quantum theory, it is written at the graduate level in such a way that it can be understood 
even by a physicist not working in particle physics. My hope is to convince the reader, 
especially the theoretician, to examine with critical eyes the present situation of particle 
theory and quantum electrodynamics. Perhaps in going along the lines which are given 
here, he will be able to propose new directions towards a better theory. 

The framework is the one of standard quantum theory and special relativity. It is 
shown that, if we want to consider seriously the concepts which are the n e c e s s a r y  
ingredients of  these theories, we are obliged to give up some superfluous ideas or 
principles which are usually accepted. The fact that these ideas are incorporated in modem 
textbooks is only of historical interest. The reader will see why we have to give up: 

i) Minkowski space-time (but not special relativity, the energy-momentum space, 
the Poincar6 invariance), 

ii) the complementarity principle, 
iii) the wave-corpuscle duality, 
iv) the quantization procedure as a universal way of constructing the quantum 

theory. 

The reader will not be astonished that the concept which constitutes the core of the 
present lectures is the one of the p h o t o n .  After all, electrodynamics is the discipline 
which governs all our observations. That explains why I felt necessary to devote a whole 
chapter to a historical sketch on the nature of light. The photon and the space are certainly 
among the most difficult concepts in physics and it was necessary to quote very often our 
great masters about them. I made my best to provide the readers with the original 
quotations. English translations of these quotations are provided at the end of the book. 

Almost all the great physicists who initiated quantum physics during the first thirty 
years of our century have disappeared: Planck, Einstein, Bohr, Born, Schrrdinger, de 
Broglie, Dirac, Heisenberg, Jordan, Pauli, Yukawa, etc. Almost all of them left our 
world deeply unsatisfied by the state of quantum theory 1. If the reader wants to know 

1 This is well known in the case of Einstein, de Broglie and Schrrdinger but less known in the case of 
Dirac:"There are great difficulties...in connection with the present quantum mechanics. It is the best that 
one can do up till now. But, one should not suppose that it will survive indefinitely into the future." He 
also says: "Our present quantum theory is very good, provided we do not try to push it too far... I feel 
that the foundations of  quantum mechanics have not yet been correctly established."(confer [Dir] in the 



more about their feelings, he could read their correspondence or he could ask one of  the 
great alive founders, Wigner, or one of  the younger masters of physics like Schwinger. 

Despite of  this lack of  satisfaction and despite of their fights (there were really 
strong fights!), they were very creative and successful as everybody knows. It seems to 
me that younger physicists must be taught about those fights and the deep critical 
arguments against quantum theory, not only because they have to be aware of  the 
difficulties of  the theory they are familiar with, but also to learn how they could make 
improvements by themselves in following the steps of  the great pioneers. One of the best 
last examples of such a behaviour is the one of Bell who discovered his inequalities, a 
source of  new beautiful experiments...and, as says Oppenheimer, "studies in the history 
of  science can bring some coherence to the general intellectual and cultural life of our 
time." 

If  we try to classify the outstanding works in theoretical physics, we are led 
roughly to the three following categories: 

i) The discovery of  formulas from experimental data; among the most famous 
examples we can mention the discovery of the Kepler laws or that of Balmer's formula 2 . 

ii) The derivation of  a theory from the analysis of  "working formulas" .  As 
examples, we can mention Bohr's atom theory and Heisenberg's matrix mechanics. 

iii) The derivation of  a theory from a deep analysis of  physical concepts. The most 
famous example of  such a category is the discovery of  special relativity. We can also 
mention the original ideas of de Broglie or those of Yukawa. 

Obviously, there are works which belong to more than one category. It is the case 
of  Newton's  gravitation theory which was a discovery of  types ii (role of  Kepler 
formulas) and iii ( the apple and the moon). It is also worthwhile to underline that 
quantum mechanics was founded in a twofoldway: type ii (Heisenberg) and type iii (de 
Broglie, Schr/3dinger). 

All these processes of  discovery, which were so fruitful in the past, seem now to be 
given up for mysterious reasons I am not able to explain. A new category was born a few 
years ago (see superstrings). 3 

In order to try to improve the present quantum theory, we could either try to 

bibliography given at the end of Chapter 1). 
2 Pertinently, L.C. Biedenharn suggested me to add, as an example, the Planck formula. 
3 There are two attitudes which are difficult to justify in research in physics since, up to now, they never 
appeared to be fruitful: one consists in trying to introduce a new mathematical structure in physics (let 
me remind the reader that Einstein did not want to introduce differential geometry for the mason it was a 
new mathematical structure); the second one consists in believing that any classical object which can be 
imagined has necessarily its quantum mechanical counterpart in the physical world, a counterpart which is 
obtained by the trick called quantization, as if quantization was a procedure taught by Nature. A 
remarkable fact is that these two attitudes interact very well to-day in superstring theory. The fact that it 
is a very nice theory is not at all an argument in favour of its physical value. Perhaps the most important 
thing we learn from superstrings is what the good physical theory is not. I could risk a comparison: in a 
sense, Democritus was more justified in building his atomic conception of matter than the contemporary 
physicists in introducing the superstring structure. 



In order to try to improve the present quantum theory, we could either try to 
discover the theory which is hidden behind the Feynman graph calculations or to analyze 
the physical concepts we are familiar with. My feeling is that the first approach requires 
the talent of outstanding mathematicians. As a modest theoretician, I will concentrate in 
the present lectures on the analysis of some physical concepts and, more precisely, on the 
one of localization (and localizability). I will show the difficulties, and sometimes the 
contradictions, one encounters in examining this concept and then, I will invite the reader 
to follow some specific directions which look promising. The contents of my lectures are 
based on personal reflections, on the readings of great authors and on discussions I had 
with the mathematician Alain Connes. Without these discussions, I would have much less 
to say. I would be satisfied if these lectures lead some readers to read or reread some of 
great master's works. It would be marvellous if one of my readers was able to improve 
the present analysis and was led to some new promising idea. Obviously, that is my 
secret hope. 

Now, let us enter the subject of  our lectures. If I asked you what we call the 
Schr6dinger position operator, you would answer immediately and unanimously: it is X. 
But what is X? 

The question is easy to answer but it takes time to make it precise. We start with the 
"ordinary space" E on which we define the Hilbert space of square integrable functions 
L2(more precisely, i f f  and g are such functions and M a point in E, we do not distinguish 
betweenf  and g i f f (M)  - g(M) = 0 everywhere except on a subset of zero measure). 

Two preliminary remarks: 
a) The standard notation for a point in E is not M but x ( or r ). This is based on the 

implicit identification of  E with R 3 with the aid of an orthonormal Cartesian frame. 
b) The measure used in the definition o f L  2 is the standard Lebesgue measure in R 3. 

Now, X is the operator "multiplication by x", an operator acting on L 2. We see that 
the identification of  E with R 3 is essential. But is this identification justified? That it is a 
complex question can be shown in decomposing it into three other questions: 

Ouestion 1: Is our space a set? 
Question 2: I f  it is a set, is it a continuum? 
Question 3: I f  it is a continuum, is it isomorphic to z~ 3 ? 

What is known is that, in the approximation of classical physics (general relativity 
excluded), the z~3 structure works very well, both for particles and waves. I do not think 
that the concept of a classical wave needs any comment. The role of R 3 is quite clear as is 
the link between waves and the theory of partial differential equations. It is not so, 
however, for the concept of particle in classical mechanics which is a very vague one. In 
the mind of the physicists of  the classical period, a particle was a small piece of matter, 
small enough to be identified in a good approximation with a point in E. This implies, of 
course, that we can also neglect the angular momentum and the corresponding rotation 
energy of this piece of matter. At the end of the XIXth century, the smallest particles were 



the atoms and smaller particles were to be discovered. I would like to insist on the fact 
that aphysical particle was always thought at that time as a subset of E filled with matter. 
Even when Thomson gave his own model of  atom, he thought of  a kind of a plum- 
pudding with electrons instead of raisins. Similarly, the first model for an electron was a 
sphere of matter uniformly charged. Then, from a classical point of view, a particle is a 
continuous set of points of matter, each point lying at a point of E. A particle lies in a part 
of E. 

Today, every physicist knows that such models are not acceptable, the particle is a 
more abstract concept but he does not give up the point structure of E .  In other words, 
paradoxically, the concept of space is the same in quantum mechanics and in classical 
mechanics. If we now examine the problem of the position of a particle, we readily see 
that we have to answer the following fourth question: 

Question 4: Supposing that the answer to the three first  questions is yes, is there a 
canonical way to associate with an elementary particle a point in E ? 

Clearly, this is a question in the classical sense; concerning its quantum mechanical 
counterpart, I cannot be very precised in such a short introduction, I only want to describe 
roughly what a physicist has in mind when he thinks of the concept of  position; to 
simplify, suppose that E is one-dimensional; we would have to associate with an 
elementary particle an operator with R as a spectrum, a real number denoting the 
coordinate in the classical sense. We readily see that in order of speaking of position in 
quantum mechanics, we need not only the classical space E itself but also a classical 
frame. The quantum mechanical counterpart of question 4 would be: 

Ouestion 4 bis: Supposing that the answer to the three first questions is yes, does exist a 
canonical measurement (an ideal one) concerning an elementary particle permitting to 
associate a point in E? 

It is clear that answering this question affirmatively implies the existence of three 
commuting operators with R as a spectrum, one for each coordinate in E. This 
requirement is valid in both relativistic and non relativistic quantum mechanics. A more 
precise formulation of Question 4 bis has been made by Newton and Wigner; the 
problem was investigated in a more rigorous and systematic way by Wightman. I will 
comment about it later on. In this brief introduction, I only want to underline that the 
Schrrdinger position operator was completely satisfactory for a non spinning non 
relativistic particle. Once a frame in E is chosen, the state of the particle is described by a 

function lg(x,y,z) of L 2. The Schrrdinger position operator is the set X, Y, Z 
(multiplication by x, y, z, respectively). The position measurement is an ideal procedure 
providing us with three real numbers x, y and z. To be more realistic, any position 
measurement is a procedure permitting us to answer the question: "is the particle in a 
given portion of  E"? Since E is a classical concept, such a measurement corresponds to 
what we could call a classical question for a quantum object. But it is fair to ask 
ourselves: does the quantum particle know anything about E? This is the main question 
we will examine in the present volume. For the moment I only want to underline some of 
the difficulties we encounter when we want to go further in quantum theory. 



i) If we have more than one particle, say two, the wave function is defined on E x E  

x R ( R  for time); the classical interpretation of  a wave in the ordinary space E 
disappears. 

ii) When we go from the Schr6dinger equation to its relativistic generalization, 

difficulties arise. Obviously, the space E x R  is replaced by the Minkowski space-time, 
but a) covariance is broken since x, y, z have corresponding observables but not t; 

b) there is no natural generalization of the carrier space E x E x R  for two particle states; 
c) the potential formalism which works for the Schr6dinger equation is rigorously 
impossible for relativistic equations (no reduced mass, Klein's paradox, etc.). 

iii)The Bohr correspondence principle tells us that we must be able to derive 
classical physics from quantum physics. According to this philosophy, we must be able 
to define E from quantum physics itself. It is not yet the case to-day. It is perhaps 
worthwhile to underline that quantization is only a trick, a trick permitting to get a true 
theory from an approximate one; it follows that a good theory must ignore the 
quantization procedure. 

In the next chapter, we will investigate some of the difficulties the physicists 
encountered in building quantum physics. Many of them disappeared during the 
construction of quantum field theory. Others were simply forgotten, due to the rapid 
successes of QED. In the next chapters we will concentrate on the present conceptual 
contradictions of quantum theory and we will give some proposals to solve them. 

Just a word before closing this introduction: I said at the beginning that my purpose 
is to consider foundations of quantum theory as established. This means that I will not 
enter the problem of the interpretation of quantum mechanics in these lectures. 



CHAPTER 1 

HISTORICAL SKETCH ON THE NATURE OF LIGHT 

Light is,without doubt, the phenomenon which is at the very origin of the modern 
revolutions in physics. First, it is the black body radiation which conducted Planck to 
introduce the notion of quanta of energy and the photoelectric effect which led Einstein to 
propose the notion of light quanta.. Second, light signals were extensively used to clarify 
the notions of space and time and to help Einstein in constructing special relativity. Third, 
it is the analogy between optical waves and analytical mechanics (through Fermat and 
Maupertuis principles) which led de Broglie to the proposal of wave mechanics. In 
contradistinction with these facts, the photon is probably the less understood concept to- 
day. As an illustration of this fact, let me mention that the democracy introduced by de 
Broglie in 1923, in extending the wave-corpuscle duality to all kinds of particles, was 
destroyed three years later by the probabilistic interpretation of the wave function by 
Born, since the wave function associated with the photon cannot be given such an 
interpretation as we will see later.1 

These are the main reasons why I think it is worthwhile to start these lectures by a 
brief history of the physical nature of light. This chapter does not pretend to be a 
complete report on the subject. My only purpose is to analyze some of the many 
difficulties and contradictions which appeared in the development of modem physics. I 
suppose the reader to be familiar with the main historical facts; he is strongly invited to 
refer to the bibliography given at the end of the chapter. 

I will divide my historical sketch in three periods, considered as acts of a drama. 

Act I (up to 1853) waves or corpuscles? 

Act II (1853-1905) waves! 

Act HI (since 1905) waves and corpuscles (or, rather, neither waves nor corpuscles). 

1This renunciation of democracy was made inadvertently. The idea of democracy between all kinds of 
particles was strongly upheld: it explains why Jordan quantized Schrtdinger waves and, later, why the 
meson was proposed by Yukawa. 



ACT I (,..-185~) 

I do not intend to discuss the well-known fight between wave and particle people. 
The main actors of this period were Huygens (1629-1695), Newton (1643-1727) 2 and 
Fresnel (1788-1827). The final point in the dispute was provided by the experiment 
suggested by Arago (1786-1853) 3 and performed by Foucault (1819-1868) in 1853. 4 
The result of the experiment was in favour of the formula c/n for the speed of light in a 
medium with a refractive index n, that is in favour of the wave theory, and not c.n as 
predicted by the emission theory. The difference is illustrated by the variational principles 

of Fermat (1661) 

of Maupertuis (1746) 

S f n  ds = 0, where n = n (x, y, z) 

t~ f v ds = 0, where m v  2 = 2[ E -  V(x, y, z)] 

The fight was strong. Let me mention that Poisson, who was defending the 
corpuscle cause, criticized the wave theory as predicting a stupid fact: light behind  a small  
circular screen  lit by a p o i n t  like s o u r c e / T h e  experiment - a beautiful one - was made: 
another success of the wave theory! 

It is important to underline that there were deep arguments opposed by corpuscles 
physicists and, at the end of the nineteenth century, although the wave victory was no 
longer brought into question, the two following conceptual difficulties were still 
unsolved: 

- Aether must be given a very high rigidity to explain high frequencies; such a rigid 
medium is supposed to fill the vacuum and all transparent materials. 

- Why do we have only transverse waves? 

These two objections were considered as very serious ones; nevertheless, the 
physicists accepted the verdict: light = waves .  Until 1905! As everybody knows, this is 
an important date, the end of Act two. 

2About the idea of Newton's emission theory, see M. Sachs in [Hoo]. 
3,, Deux points rayonnants placds l'un pros de l'autre et sur la m~me verticale brillent instantandment en 
face d'un miroir tournant. Les rayons du point supdrieur ne peuvent arriver d ce miroir qu'en traversant un 
tube rempli d'eau; les rayons du second point atteignent la surface rdfldchissante, sans avoir rencontrd dans 
leur course d'autre milieu que l'air. Pour fixer les idZ'es, nous supposerons que le miroir, vu de la place que 
l'observateur occupe, tourne de droite ~ gauche. Eh bienl si la thdorie de l'dmission est vraie, si la lumi~re 
est une matidre, le point le plus dlevd semblera h gauche du point inf~rieur; il para~tra ~t sa droite, au 
contraire, si la lumidre rdsulte des vibrations d'un milieu dthdrd..."(FmnQois Arago, quoted in [Cos]). 
4,,...il ne peut plus subsister le moindre doute sur la v~ritable valeur de la vitesse de la lumi~re dans 
l'espace vide ou dans notre atmosphdre. Quant aux vitesses que prend la lumidre en pdndtrant dans les 
milieux rdfringents, elle n'dtait donnde que par le calcul, qui, interprdtant la rdfraction dans le systdme de 
l'dmission ou dans le systdme des ondulations, donnait, selon l'hypoth~se adoptde, des rdsultats bien 
diff~rents. M. Arago, dds l'annde 1838,fit le premier sentir l'importance d'une expdrience qui, sans m~me 
conduire d la mesure exacte des vitesses de la lumi~re dans les milieux indgalement rdfringents, mettrait 
seulement leur diffdrence en dvidence et fixerait, par suite, les physiciens sur la manidre d~nterprdter la 
rdfraction." (Jean-Bernard-I_Aon Foucault, quoted in [Cos]). 
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~ T  lI (1853-1905) 

The drama is now played on two separate stages. On the first one, one can see how 
the physicists were progressively led to reject the aether and see the cont inual  
improvement of the f ield notion. The roots of this part of history lie in the works of 
Ampere (1775-1836), Faraday (1791-1867) and Maxwell (1831-1879). It culminates 
with the building of special relativity by Einstein (1879-1955). On the second stage, the 
body radiation, postulated in 1791 by Pr6vost (1751-1839), is investigated intensively 
until Planck found the key of the contradictions of the laws of radiation, in providing the 
physicists with an ansatz: energy emitted and absorbed by quanta. The drama culminates 
on this stage when Einstein proposed to consider light as composed of such quanta! The 
main events of Act two are sketched in Table 1. It is a remarkable fact that the same man 
appears as the hero on the two stages and that the two curtains fall simultaneously. 

We must underline that during the whole second act, light was considered as a wave 
phenomenon governed by Fresnel's equations. The fact that Maxwell reinterpreted light 
as an electromagnetic phenomenon had no effect on its wave natureS; the Fresnel vector 
became the electric vector. From the mathematical point of view, the theory was 
considered as a perfect one but none explanation was given about the two difficulties 
concerning the rigidity of the aether and the absence of longitudinal waves. This explains, 
in my opinion, why Poincar6 entitled his book Thdorie mathdmatique de la lumi~re 6: the 
theory was not satisfactory from the conceptual point of view; it was just a mathematical 
theory; the nature of light was not really understood, even if, since Maxwell, the 
physicists knew that electromagnetic waves were synonymous of aether vibrations. 

If I mention the Poincar6 book, it is to emphasize the similarity of the situation of 
electrodynamics at that time and the present situation of quantum electrodynamics. In 
both cases, the theory is able to provide, in principle, all numerical results we need but, 
in both cases, the concepts used are not satisfactory. In fact, the situation is even worse 
to-day because we cannot refer to QED as a mathematical theory but rather as an 
algori thmic one 7. In fact, it would be very nice if we were able to discover the 
mathematics which are behind the Feynman diagrams and renormalization calculations. 

5The aether got one more property: it became a conductor. 
6The reader could object that such a title is explained by the fact that Poincar6 was himself a 
mathematician and that the book was not intended to penetrate physical aspects. That it is not true can be 
ilustrated by the fact that the Poincar6 book is probably the only textbook in optics where, after the proof 
of the refraction sinus law for electromagnetic plane waves, a natural physical question is asked and 
answered, namely: are we permitted to identify a pencil of rays used by an experimentalist (to check the 
sinus law) with a plane wave? The Poincar6 conclusion is" yes, provided the width of the pencil is at least 
ten times the wavelength. 
7"Working with the present foudations [of quantum mechanics], people have done an awful lot of work in 
making applications in which they can find rules for discarding the infinities. But these rules, even 
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1862 
1865 
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1884 
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1888 

1893 

1894 
1896 
1900 

1905 

~ , , £ . 1 :  A e t h e r  d i sappears  

Displacement current 
E.M.waves  have speed c, 

Maxwell(1831 - 1879) 

Michelson experiment, 
Michelson(1852-1931 ) 

Electric waves, 
Hertz(1857-1894) 

Aether? Poincart(1854-1912) 8 

Light carries a momentum,  
Poincar6 and Lorentz(1853-1928) 
Special relativity 

Einstein(1879-1955) 

~dag£.2: T o w a r d s  a gaz  o f  pho tons  

Radiation equilibrium, 
Kirchhoff(1824-1887) 

Stefan law, Stefan(1835-1893) 
Radiation pressure, Bol tzmann 

(1844-1906) 

Displacement law, 
Wien (1864-1928) 

Wien law 
Planck law, Planck(1858-1947) 

Light is made of  quanta, Einstein 9 

T a b l e  1 

though they may lead to results in agreement with observation, are artificial rules, and I just cannot 
accept that the present foundations are correct" [Dir, p.20]. 
8It is possible to see the progressive disappearance of the aether in comparing the two successive editions 
of the Thdorie mathdmatique de la lumidre by Poincart. In the first one, the first chapter is devoted to the 
theory of elasticity. Two vectors are introduced which are interpreted in the second chapter as the electric 
and magnetic vectors. Two years later, in the second edition, Poincar6 starts directly with Maxwell 
equations and then shows the analogy of the electromagnetic field with elasticity. However, he did not 
discard the aether explicitly. 
91 do not say "a gaz of particles" because the photon (named by Lewis in 1926) was not recognized 
completely at that time as a particle (it will be given a momentum in 1917 by Einstein). Einstein always 
referred to the photon as a light quantum. Even to-day, there are physicists who are not considering it as a 
particle but as a quantum of a gauge field. Moreover, if we want to use the expression "gaz of particles", 
it would be better to be more precise and to say "a gaz of indistinguishable particles". As says 
SchrOdinger:"....The recognition that the thing which has always been called a particle and, on the 
strength of habit, is still called by some such name is, whatever it may be, certainly not an individually 
identifiable entity" [Schl, vol.3, p.702]. 
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Before going to Act three, we have to emphasize the following remarkable fact: in 
the same year 1905, at the moment where Einstein was inviting the physicists to give up 
the aether 1° which was at the origin of the two difficulties of the wave theory of light, he 
himself was bringing into question the wave theory of light...Let us also emphasize that 
giving up the aether transformed fields into very respectable objects not requiring any 
material support. This provided Maxwell theory with a sublime character which explains 
probably why Maxwell equations were kept as a foundation ingredient of quantum 
electrodynamics.11 

ACT III  (1905-....) 

It took twenty years for Einstein to convince his colleagues of the existence of light 
quanta. This does not mean that he was rejecting the classical theory of Maxwell. He 
wrote in 1924 "There are therefore now two theories o f  light, both indispensable and-  as 
one must  admit  to-day in spite of  twenty years o f  tremendous effort on the part  o f  
theoretical physicists - without any logical connection" (quoted in [Dre, p. 199]). For us 
who are so familiar with the quantum explanation of the photoelectric effect, such a delay 
is difficult to believe. The fact is that the first photon to be "seen" was in an experiment 
performed by Compton and Simon in 1925 (three years after the discovery of the 
Compton effect) where it was possible to interpret, in a Wilson chamber, the travelling 
of a photon between two points corresponding to a double scattering. It was really this 
experiment which persuaded the physicists of the reality of  light quanta. There was a 
good reason to be reluctant to such objects: they were unable to explain interferences; no 
possibility was seen to conciliate the continuous character of waves and the discreteness 
of light quanta. That explains why Bohr, Kramers and Siater proposed in 1922 a theory 
avoiding light quanta. In his Nobel lecture in 1922, almost at the time of Compton's 
paper, Bohr declared himself against light quanta (Table 2). 

1925 can be considered as the official year of the acceptance of the light quantum; 
paradoxically, it was two years after the birth o f  quantum mechanics, t It seems natural to 
consider this period (1923-25) as separating the first two scenes of Act III. For our 
purpose, I do not intend to develop extensively this act. The main facts which occured 
before the death of Einstein are sketched in Tables 2, 3 and 4. It is important to underline 
the strong (and long!) drama of Einstein who was confessing almost at the end of his life 
that he never really understood what was a light quantum although he spent twenty years 
to convince his colleagues of the reality of the photon. 

10Not exactly; Einstein underlines in a talk given at the University of Leyden (May, 1920) that relativity 
does not obliges us to reject the aether: "Une rdflexion plus attentive nous apprend pourtant que cette 
ndgation de l'dther n'est pas ndcessairement exigde par le principe de la relativitd restreinte. On peut 
admettre l'existence de l'dther, mais il faut alors renoncer g~ lui attribuer un dtat de mouvement ddtermind, 
c'est-dt-dire il faut le ddpouiller par l'abstraction de son dernier caractdre mdcanique, que Lorentz lui a 
encore laissd"[Ein]. 
l lHowever, the mathematical beauty of Maxwell theory is partially obscured in quantum 
eleclrodynamics. 
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Scene 1: Towards th0 photon (1905-1923) 

1905 

1913 

1917 

1918 

1922 

1922 

1925 

The photoelectric explained (Einstein). 

The Bohr atom. 

The light quantum has a momentum (Einstein). 

"I have no more any doubt about the reality of  quanta in radiation, although I am 

still alone with this conviction "(Einstein to Besso). 

The Compton effect. 

Bohr-Slater-Kramers' theory. "In spite of its heuristical values...[Einstein's] 

hypothesis" of  light quanta is irreconciliable with so-called interference 

phenomena, is not able to throw light on the nature of  radiation". (Bohr's Nobel 

lecture). 

The Compton-Simon experiment: it is the birth of the photon ( the word itself is 

introduced b~¢ Lewis in 1926). 

Table 2 

Scene 2: The birth of.qB.ontum mechanics. 

1923 

1922/4 

1924 

1925 

1925/6 

1926 

De Broglie's waves. 

Light quanta statistics (de Broglie, Bose, Einstein). 

The exclusion principle (Pauli). 

The spin of the electron (Uhlenbeck and Goudsmit). 

Matrix mechanics (Heisenberg, Born, Jordan). 

The Schr6dinger equation. 

The Fermi-Dirac statistics. 

Born's statistical inte~retation. 

Table 3 
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Scene 3: Quantum mechanics and relativity. 

1928 

L930 

L931 

L932 

1939 

L949 

t951 

The Dirac equation as a relativistic substitute of the Schr/Sdinger equation 

(successes: g= 2, Thomas'l/2 factor; difficulty of the negative energy states). 

Schr6dinger's proposal for solving the problem of negative energy states: a new 

relativistic position operator for the electron. 

Dirac suggests the existence of the positron 12. 

The positron is discovered (Anderson). 

Elementary systems defined with the aid of the Poincar6 group (Wigner). 

The photon is not localizable (Newton and Wigner). 

"All the fifty years of  conscious brooding have brought me no closer to  the 

answer to the question "what are light quanta?" Of course, to-day, every rascal 

thinks he knows the answer, but he is deluding himselF(Einstein to Besso, 

quoted in [Stu], p.332). 13 

Table. 4 

It seems that, even after the discovery of the Compton effect, Bohr was still reluctant 
to accept the concept of  light quantum. "As Ehrenfest reported to Einstein at the 
beginning of  1922, Bohr was much more inclined to abandon the energy-impulse- 
conservation principle for the elementary processes "than to shift the blame on the aether'. 
Bohr was not even willing to understand the Compton effect as supporting the particle 
point of  view" (Karl Von Meyenn in [Lah]). According to the same source, it is only in 
1925 that Bohr accepted the idea of light quantum and give up the theory he had built 
with Kramers and Slater: "Now we can do nothing else but to painlessly erase all traces 
of our revolutionary attempt"[Lah ] 14. 

12About the non obvious character of that prediction, see [Dir]. 
13Franck says in his Einstein's biography that "[Einstein] studied all works of the great physicists to the 
purpose of finding whether they could contribute to the solution of this problem concerning the nature of 
light ". 
14See [Dre] where the historical role of the Bohr-Kramers-Slater theory is extensively studied. According 
to Dresden, almost all physicists were ready to adopt it, some of them with much enthousiasm (Born), 
others with reservations (Heisenberg). The main objections came from Einstein and Pauli. Biedenham us 
right to underline (private letter):" The BSK theory had one very new and correct point: the idea of virtual 
states which was developed by Slater. It is ironic that Slater's best physics contribution got buried in the 
difficulties introduced by his famous collaborators". 
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It is hard to underestimate the historical role played by the Compton experiment. As 
we underlined in Table 2, it was a quite impressive quantitative proof that the light 
quantum behaves like a particle with its own energy-momentum; it was really the birth of 
a new particle. Then it was time for de Broglie to put on the same footing the photon and 
the other particles. The de Broglie extension of the wave-particle duality was a precursor 
idea for the Yukawa extension of the field-particle duality (the meson). Such a 
democracy 15 is also present in the Wigner paper on elementary systems described with 
the aid of irreducible representations of the Poincar6 group. But, as we already mentioned 
at the beginning of the present chapter, this democracy was innocently destroyed in 1926 
by the Born statistical interpretation of the wave function. 16 

To sum up this historical introduction, I would say that what I had tried to do is to 
persuade the reader that the 1951 quoted sentence of Einstein deserves looking into, 
despite Bohr's efforts. Chapters 2, 3 and 4 will be devoted to many of the difficulties of 
quantum theory in which the photon concept plays a central role. Chapter 5 will describe 
an attempt to solve one difficulty about the photon, namely the problem of its localization. 
We will see that it will help to clarify the notion of complementarity of Bohr. In Chapter 
6, we investigate some consequences for the other particles and will show how the spin- 
orbit coupling appears as a by-product. Finally, we examine in Chapter 8, which changes 
could be expected for quantum field theory and why we have to give up Minkowski 
space-time. 

[Be.El 
[Bo.E] 
[Bro] 

[Cos] 

Einstein-Besso, Correspondance (1903-1955), (Hermann, Paris, 1972) 
M. Born, The Born-Einstein Letters (Walker, New-York, 1971). 
L. de Broglie, Les incertitudes d'Heisenberg et l'interprdtation probabiliste de 
la m~canique ondulatoire (Gauthier-Villars, Paris, 1982). 
M. Cosmovici, L'dvolut ion de la phys ique  au x I X e s i d c l e  (Larousse, 
Paris,1914). 

15One of the main fighters in favour of the democracy between all particles was Jordan. "He was 
probably the first to be convinced of the need of quantizing the electron wave function and of abolishing 
the distinction between matter and energy; matter as light could be created and annihilated "[Dar]. 
16This was revealed - but not made explicit - by a result of the Newton and Wigner paper of 1949: the 
photon being not localizable, its wave function cannot be given the Born interpretationt About this 
conlradiction, I cannot resist to the temptation to quote Slater [Pri, p.20]: "When I went to Copenhagen 
at the end of 1923,...Bohr had not yet brought himself to the point where he would admit the existence of 
corpuscular photons along with the waves of light. My proposal to Bohr and Kramers had been a 
straightforward probability connection between the waves and photons: the intensity of the continuous 
radiation field, at any point of space, was taken to determine the probability of finding photons at that 
point. Bohr objected to the photons so strongly that it was obvious that I would have a fight on my 
hands if I insisted on them, though I never doubted their existence...A short time later, the work of Bothe 
and Geiger (1925)...[forced] Bohr to give up his opposition to the photons...Bohr himself, by 1926, 
wrote me regretting that he had opposed me in 1923". As says Pais:"The history of science is full of 
gentle irony". 
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CHAPTER 2 

THE C O R R E S P O N D E N C E  PRINCIPLE,  
THE WAVE-CORPUSCLE DUALITY, THE C O M P L E M E N T A R I T Y  

PRINCIPLE AND THE SLIT EXPERIMENT.  

In the present chapter, I intend to make some comments about two important 
general principles which are commonly considered as essential to understand how to use 
quantum mechanics. I mean the correspondence principle and the complementary 
principle. In the following, the reader is supposed to be familiar with what is written 
about them in standard textbooks. Although these principles are considered as 
fundamental from the point of view of philosophy, my purpose is not at all philosophical. 
What I want is to examine them independently of their historical context, as if they were 
just proposed. Let us examine first the correspondence principle. In contradistinction 
with what is usually taught in the majority of textbooks, many physicists are very 
prudent, even perplexed, in discussing the value of this principle. Pais is fight to say that 
"It takes artistry to make practical use of  the correspondence principle" ([Pai2], p.247). 
Among many opinions, let us quote the following judgement: "It is difficult to explain in 
what [the principle] consists, because it cannot be expressed in exact quantitative laws, 
and it is, on this account, also difficult to apply. In Bohr's hands it has been 
extraordinary fruioCul in the most varied fields; while other more definite and more easily 
applicable rules of  guidance have indeed given important results in individual cases, they 
have shown their limitations by failing in other cases"[K.H]. 

The correspondence principle may be given such a general meaning that it becomes 
completely useless. This is the case if we formulate it in the following way: given a 
theory, there must exists a procedure to obtain an approximate theory by supposing that 
some fundamental constant is given a zero or infinite value. Such a statement is 
unfortunately meaningless. To prove it, I will take the following example: make c = oo in 
the theory of special relativity. One of the most fundamental formulas of this theory is 

E 2-  p2c2 = M 2 c 4 (2,1) 

and when c is going to infinity, we see that the total energy of a particle becomes 
infinite.This is the expected result, since the rest energy Mc 2 becomes infinite together 
with c. 1 Now, divide Eq.(2,1) by c 2 and take the limit. We obtain the unexpected result 

1The reader would be tempted to say that this result could be added to classical physics without damage. I 
do not agree. If the total energy of any system is infinite, what would happen to the classical principle of 
energy conservation? 
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that P also goes to infinity! Another "stupid" result is obtained by dividing (2,1) by c 4 
before taking the limit. It seems amusing to underline that, if we subtract the infinity Mc 2 
from the infinite energy, we are left with a concrete finite quantity, namely the kinetic 
energy. This is certainly the simplest example where a theory needs subtracting an infinite 
number from another infinite number to obtain an observable quantity. Is it an indication 
that a theory which has to subtract infinities is necessarily an approximate theory? 

This example proves that, to be correct, a correspondence principle must tell us 
which formulas must be transformed. Obviously, these formulas cannot be chosen 
arbitrarily, they must lead us to a coherent family of  formulas because transforming one 
formula could contradict another transformed formula. 

There is much more to say about that. Physics is not just a set of formulas; it is a 
science of Nature and any correspondence principle must take this character into 
consideration. Indeed, when we are interested in a correspondence principle, we have in 
mind a set of two theories, say A and B, we want to compare. Moreover, there is a 
dissymmetry between the two theories, for instance B is the approximation of A. 
Therefore, we do know that B is a wrong theory, or, to say the things in a less drastic 
way, there are physical situations where B gives completely wrong predictions and other 
ones where the predictions are acceptable. As a consequence, a correspondence principle 
to be useful must state explicitly under which physical conditions theory B can be 
applied. Let us take again the example of special relativity. It has been shown by Lrvy- 
Leblond that Newtonian mechanics is obtained from special relativity not only in taking 
the limit c going to infinity in specific formulas but also in restricting ourselves to 
experiments which involve small space intervals compared to time intervals [Lrvl]. 
More precisely, the Lrvy-Leblond statement is that the Poincar6 group, the kinematical 
group of special relativity can give by contraction 2 (c going to infinity) two distinct 
groups, the Galilei group and the Carroll group. 3 As Lrv~,-Leblond proved, the two 
groups are kinematical groups associated with different physical approximations. 4 
Theories A and B associated with this correspondence principle are relativistic and non 
relativistic m e c h a n i c s  but we could be more ambitious: we could ask for a 
correspondence principle which permits to go from special relativity to pre-Maxwell 
physics (Newtonian mechanics + pre-Maxwell electrodynamics). Obviously, more laws 
would be involved and, consequently, more experimental situations. The reader is 
referred to [Lrv2] and to [B.K] for this problem. Let us underline our conclusion. A 
correspondence principle concerns: 

a) a consistent set of formulas of the best theory A describing a given domain of 
physics, 

b) a given fundamental constant appearing in this set of formulas and the value 
(zero or infinity) it is given to get an approximate theory (Theory B), 

c) the experimental conditions for the validity of Theory B. 

In the present volume, we are interested in quantum mechanics and the associated 

2a concept introduced by InOnu and Wigner [I.W]. See also [Seg] and [Sal]. 
3named in this way by IAvy-Leblond, after Lewis Carroll, the author of Alice in Wonderland. 
4Obviously, nothing forbids us to consider seriously a world governed by the approximate theory. To 
know more about the physical meaning of contraction, see [13.L]. 
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correspondence principle involves traditionnally the Planck constant. The reader is invited 
to play the above game and examine "stupid" proposals as the one which consists in 
replacing h by zero in the Schrtdinger equation. I hope that the reader is now convinced 
that, before stating a principle of this kind, we have to select in quantum mechanics a 
consistent set of formulas where we will replace h by zero. We will not look for such a 
set. We have still the two following open questions: i) how large is the domain of physics 
we are interested in? and ii) what kind of experiments are permitted in the approximated 
theory? These two questions are never explicitly answered but let us try to say what 
physicists have in mind. First, it is clear that they cannot think of an approximate theory 
(Theory B) which is not self-consistent; in particular, B cannot be the combination of 
Maxwell electrodynamics and Newtonian mechanics since these two theories are not 
compatible. Among many possibilities, the correspondence principle under consideration 
may concern one of the three following possible links: 
a) QED to Maxwell theory, 
b) non-relativistic quantum physics to pre-Maxwell physics, 
c) non-relativistic quantum mechanics to Newtonian mechanics. 

The two last cases are quite close because theory A has no room for light quanta and, 
consequently, there is no room for electromagnetic waves in the approximate theory. It 
follows that, from our point of view (where the photon is considered as the key of 
quantum physics), the correspondence principle is of very small interest in these two 
cases. We are left with case a. Unfortunately, in this case, it seems that the corresponding 
problem is a pure academic one: I do not know any attempt to derive Maxwell theory 
from QED. 5 

I do not intend to investigate these problems in more details; I would like to 
underline that the questions they are asking are of historical rather than physical order. 
Let us see why. Going from quantum theory to classical physics 6 suppose that the 
particle aspect of  the photon disappears together with the wave aspect of the electron. 
Why would it be more interesting for physics to consider this limit rather than the 
opposite, namely, keeping the photon and giving up the electron as a particle? Why do 
not we consider the wave limit of QED, both for the Maxwell and the electron fields? It is 
worthwhile to quote a sentence of Jordan writen in 1925:"We can understand the 
elementary scattering process not only as the scattering of light waves by material 
corpuscles but also as the scattering of matter waves by corpuscular light quanta"(quoted 
in [Dar, p.219]). We have probably quite many approximate theories of QED... 

As a conclusion, I would say that I do not deny the value of correspondence 
principles, provided they are investigated in the framework of physics (in both theoretical 
and experimental aspects) or in their historical role, but much more work is needed to 
state them in an acceptable way. 

Let us now examine the wave-corpuscle duality and the complementarity principle. 
The author of this principle is Bohr. This is not surprising; as we underlined in the 
previous chapter, Bohr was reluctant to accept light quanta, essentially because it seemed 

5As a joke, what about the "exercise": derive geometrical optics from quantum chromodynamics? 
6It is not clear if, in the historical context, the correspondence principle implies the equation: classical 
physics = Newtonian mechanics + Maxwell electrodynamics This is a bastard theory. 
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impossible to conciliate the continuity of Maxwell equations with the discreteness of 
light. As we saw, he tried, with Kramers and Slater to conciliate the continuity of 
Maxwell equations with the discreteness of emission and absorption. In other words, he 
was ready to accept Planck's quanta, not the ones of Einstein. It took time for him to 
recognize the validity of Einstein's concept. It is obvious that accepting light quanta was 
not enough to solve the contradiction. The complementarity principle was a way of 
accepting both Fresnel-Maxwell and Planck-Einstein legacies and to go on, instead of 
adopting the critical attitude of de Broglie 7, SchrSdinger or Einstein. My opinion is that 
these three great physicists were right in principle, right in that there was really a 
difficulty to solve; in a sense, Bohr's attitude was pragmatic, his principle was just an 
expedient permitting him to go further. 

What the complementarity principle asserts, in its simplest form, is that the two 
aspects of light, namely wave and quanta, are complementary; that means that there are 
experiments for which the interpretation is ondulatory and others for which it is 
corpuscular. Obviously, this principle was extended to matter after de Broglie's wave 
mechanics and Davisson-Germer's experiment. Instead of de Broglie's and 
Schr/Sdinger's efforts to conciliate the two aspects, Bohr stated his principle according to 
which, depending of the experiment, only one aspect is present. 

I would like to present here two objections to Bohr's idea. First, there are situations 
where the two aspects compete to interpret a phenomenon. For instance, the Doppler 
effect has a wave and a corpuscular explanation. Second, given two experiments, say AO, 
an ondulatory one, and A1, a corpuscular one, it could exist a continuous set of 
experiments A(x) such that A(O) = AO and A(1) = A1. Then, where is the frontier in this 
set which separate the wave experiments from the corpuscle ones? 

Let us illustrate such a situation by a famous thought experiment, namely the 
electron slit experiment, as it is described by Feynman in his lectures [Fey]. I will not 
describe it, because every physicist knows it very well. I will concentrate on a part of this 
experiment, namely the continuous way it is possible to make the interference pattern to 
appear or to disappear progressively. It is well accepted that the fringes disappear 
completely if we try to know which slit each electron went through, with the aid of an 
intense light source. At this stage, a natural question arises: what happens if we diminish 
continuously the intensity of light? Everybody knows the answer: the interference pattern 
reappears progressively. The important thing is that, to explain why, we need two kinds 
of explanations, depending on the way the radiation is becoming less and less intense: 
a) if the wave length is fixed, then we must diminish the number of photons emitted per 
second; therefore the probability of a photon-electron scattering decreases which means 
that there are electrons which are not seen; these electrons interfere; b) suppose now that 
we make the wavelength increasing and keep fixed the flux of photons; all the electrons 
are seen but in a worse and worse way, because diffraction of light does not permit us to 
determine the exact position of the electron (the optical image of a point is not a point, but 
a spot the dimensions of which increase with the wavelength); therefore, when the 
wavelength increases, we cannot say, for more and more electrons, through which slit 
they passed. That is the reason why the fringes are reappearing progressively. 

7In fact, de Broglie rallied for a while the so called Copenhagen school. It was his "pragmatic period". 
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It is clear that in the first case, the explanation is of corpuscular type but, in the 
second it is of ondulatory type. You could call on the Bohr complementarity principle in 
saying that we considered two distinct experiments, but this is wrong for the following 
reason. Let us denote by v the frequency of the light source and by n the number of 

photons emitted per second. With each point in the plane (v, n) is associated one 
experimental setup. Where is the frontier in this plane between the wave and the 
corpuscle experiments? If you think that there is no frontier, it implies that the two 
aspects are simultaneously present, at least in some domain; it follows that we really have 
to conciliate the two, as claimed in particular by Einstein, de Broglie and Schr6dinger. 
Moreover, let me emphasize another inconsistency in this thought experiment: although 
we are interested in an interference experiment, that is to say an ondulatory property of 
the electrons, we explain the reappearing of the interference pattern in both cases a and b 
in considering electrons as particles! 

As a teacher, I must confess that I am always embarrassed in teaching a principle 
which is presented as essential in all textbooks but I am reluctant to accept; I must also 
testify that it is hard for my students to understand it and they are very sorry of that. I 
mentioned the names of Einstein, Schr6dinger and de Broglie; it is natural to know the 
opinion of Heisenberg; let me quote him: "The concept of complementarity introduced by 
Bohr... has encouraged the physicist to use an ambiguous rather than an unambiguous 
language, to use the classical concepts in a somewhat vague manner in conformity with 
the principle of uncertainty, to apply alternatively different classical concepts which 
would lead to contradictions if used simultaneously... When this vague and unsystematic 
use of the language leads into difficulties, the physicist has to withdraw into the 
mathematical scheme and its unambiguous correlation with the experimental facts." 
[Hei2]. Heisenberg took refuge in the mathematical formulation of quantum theory to 
escape the difficulty. It is a surprising attitude for the physicist who stated the uncertainty 
principle. 

Let me conclude: if photons exist - and I think that everybody believes that they do 
exist - there must be a photon explanation of experiment b. It is one of the aim of these 
lectures to provide such an explanation. 8 

[B.K] 
[B.L] 
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CHAPTER 3 

THE SPIN QUANTIZATION PROBLEM. 

The quantization problem is generally presented as follows: given a classical 
observable, that is a function on phase space, what is its quantum equivalent, in the 
Heisenberg sense? Before entering this problem from the conceptual point of view, it is 
important to underline that it is the inverse problem which has a physical meaning. 
Indeed, if we believe in quantum physics as a better theory than classical mechanics, the 
natural question is to understand how we can define classical observables from quantum 
ones, since it is natural to be able to derive an approximate theory from the exact one 
rather than the converse. We could also say that quantization must be considered, at best, 
as a trick I which permits to guess from a non satisfactory theory what could be the right 
one. This trick is unknown from Nature; it cannot be considered as a law. The inverse of 
the quantization procedure has a name; it is the correspondence  pr inciple  expressed in the 
following general form: there must exist a procedure to get from quantum theory a theory 
which contains all results of classical mechanics. 2 

This small discussion has an important consequence. When quantum mechanics was 
discovered, the only classical observables which were known were the functions on 
phase space and it was believed that with each such observable could be associated a 
unique quantum equivalent; such a one-to-one correspondence was broken when spin 
was discovered and it was said that spin components were pure quantum observables 
without classical equivalent. Obviously, if we are referring to standard classical 
mechanics of Newton, Hamilton, Lagrange, Poisson, etc., it is just a fact. This does not 
mean that it does not exist an intermediate theory which is classical,  in that a) there is no 
quantum number, b) it has spin variables and c) it is equivalent to Newtonian mechanics 
when all spins are zero. As we will see, such a theory exists. Let us denote by C' this 
theory, by C the Newtonian one and by Q the quantum theory. We have the following 
chain of  approximations: 

Q --~ C' ~ C (3,1) 
1 2 

The arrow 1 corresponds to the disappearing of any quantum number; the second arrow 

1About quantization, Dirac says that "it was a good description to say that it was a game, a very 
interesting game one could play" [Dir,p.7]. 
2It is important to underline that the correspondence in question is the one relating the quantum theory of 
massive particles to the classical theory of these particles. See also the beginning of Chapter 2. 
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describes the vanishing of all spins. There exists a quantization procedure (the Kostant- 
Souriau quantization) which permits to go from C' to Q and which reduces to the usual 
canonical quantization when all spins vanish. Obviously the first arrow does not say that 
Planck's constant goes to zero. If it did, spins would disappear immediately; it only says 
that all observables which have dimensions of an action can take any real value. 

Before deciding that the spin components were quantum observables without 
classical counterparts, the physicists tried hard to find classical models for spinning 
particles. The first model was the spinning top which is a system with three degrees of 
freedom. By quantizing it in the canonical way, one arrives at a quantum system with too 
many quantum numbers. In particular, each angular momentum L has (2L+1) 2 states. In 
other words, instead of a finite number of components for the wave function, as it is the 
case in the Pauli-Schrt~dinger or Dirac equation, the quantization of the top was providing 
the physicists with an infinite number of components. The spinning top cannot be 
considered as a classical model for an elementary spinning particle. The first to consider 
an acceptable classical model for spin was Kramers. I will describe it later on. 

Spin was not the only difficulty encountered in the quantization problem. The other 
one is due to relativity; the fact that the position of a particle is a quantum operator and 
time just a parameter is hard to accept in relativity where covariance requires to put 
position and time on the same footing. Usually, one escapes this objection by saying that 
the fight quantum theory is relativistic quantum field theory (QFT) but i) it is a simple 
matter to restrict QFT to one particle states and ii) it is not clear how we derive non 
relativistic quantum mechanics from QFT. Another pertinent question arises: why do we 
think to be right in using canonical quantization for  quantizing fields, a procedure which 
is unable to quantize spin? 

In standard textbooks, quantum theory is introduced in successive steps: i) non 
relativistic spinless particles, ii) spin, iii) relativistic equations. The first step is 
characterized by the following facts: a) There are roughly two equivalent approaches, the 
wave function one and the Heisenberg one; b) the Heisenberg approach is related to 
classical mechanics through quantization; c) interactions between systems are described 
by Hamiltonians. In the second step, property b disappears i in the third step, we are left 
with a half of property a: the wave equation approach. A great improvement was made 
about free elementary systems by Wigner in 1939 when he defined the Hilbert space of 
the states of a free relativistic elementary system as the carder space of  a projective 
unitary irreducible representation (unirrep) of the Poincar6 group. The Poincar6 group to 
be considered for an elementary particle depends on the particle. Generally, it is the two- 
sheeted group (the one with parity) except for particles only involved in weak interactions 
(neutrinos) for which it is the connected group only. Each unirrep is characterized by 
mass and spin. The advantage of the Wigner approach is not only to have a Hilbert space 
on which we know how to perform Poincar6 transformations, but also to provide us with 
natural quantum observables, the momenta  . The energy H (free Hamiltonian) is 
associated with the time translations, the linear momentum P with space translations and 
the angular momentum J with the rotations. Since time translations commute with both 
space translations and rotations, we have 

[ H, P] = 0, [H, J] = 0 and, trivially, [H, H] = 0 
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which imply that P, J and H are constants of  the motion. Obviously, any function of 
these observables are also constants of the motion, but P, J and H are moreover additive 
observables 3which means the following: consider a system composed of non interacting 
elementary systems. Its states span a Hilbert space which is the direct product of the 
Hilbert spaces associated with each elementary system. The action of the Poincar6 group 

go is given by the direct product of representations and the corresponding momenta are 
obtained by adding the elementary momenta. 

Very often, when one refers to the Wigner work, it is to say that what Wigner did 
was to associate with each kind of elementary particle a unirrep of the Poincar6 group. It 
is important to underline that Wigner did not refer to elementary particles but to 
elementary systems, which constitute a larger class of objects. For instance, a hydrogen 
atom in its fundamental state is an elementary system with a given mass (a little bit less 
than the sum of the proton and electron masses) and spin zero. The set of all states of the 

hydrogen atom form a representation space for a reducible representation of ~0 but, 
unfortunately, group theory says nothing about the elementary particles (proton and 
electron) which compose the atom. The reason is that these particles are interacting. The 
Poincar6 group is unable to associate with a non isolated system any momentum or 
energy observable. But it is a marvellous tool for analyzing a reaction with the aid of the 
momenta additivity of the ingoing and outgoing elementary systems. 

It is not a simple matter to describe interactions between particles in classical special 
relativity. The things are more complicated in quantum mechanics since the intermediate 
fields carry quanta and, for that reason, we usually say that quantum field theory is the 
natural framework for quantum relativity. Strictly speaking, this is not true because the 
quanta of the intermediate fields may as well be called particles; therefore, it is legitimate 
(although not orthodox) to say that quantum relativity describes particles interacting 
without fields. We will come back to this aspect in another chapter. 

At the beginning of this chapter, I said that there was a "classical theory" of 
elementary particles, a theory denoted by C' in Eq.(3,1),which was taking into account 
spin variables. C" has also the advantage of describing massless particles with or without 
helicity. Moreover, by quantizing it in a suitable manner, we get the Wigner theory of 
elementary particles. This concept of a classical spinning particle was proposed by Bacry 
in 1967, then, independently, by Arens and was extensively studied by Souriau. The 
method of quantization used in this scheme is due to Kostant and Souriau (independent 
works). The essential idea of C' can be described as follows. 

According to Wigner, an elementary particle is described by a Hilbert space on which 
the Poincar6 group acts irreducibly. This means that any state of this Hilbert space is 

3The momenta are not only constants of the motion and additive observables, they are also conserved 
quantifies; this means that they are constants of the motion for any isolated system (example: the electric 
charge is a conserved quantity). Obviously, any function of the momenta is also a conserved quantity. It 
follows, in particular that the so-called invariant mass defined by m2= H 2 -p2 is also a conserved 
quantity. Very often the mass is said not to be conserved; in fact what is understood is that it is not 
additive. 
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cyclic or, in other words, that any state is obtained from any other one by combining the 
three following types of operations: 

a) performing Poincar6 transformations on the initial state, 
b) superposing linearly the states obtained in a, 
c) taking the limit of a Cauchy sequence of states obtained by operations a and b. 

In order to find an analogous definition for a classical elementary particle, it is natural 
to drop operation b (the superposition principle is ignored in classical mechanics). 
Clearly, operation a must be kept since it is clear that any Poincar6 transformation must 
transform a classical state of a particle into another state of the same particle. This means 
that we require the transitive action of the Poincar6 group on the set of states S. In group 
theoretical language, this property reads:the space of  states is a homogeneous space S of  
the Poincar~ group. Clearly, S is a finite-dimensional manifold and, consequently, no 
requirement of type c is needed. 

In the quantum case, the set of states has a structure, that of a Hilbert space 4 and ga 
acts unitarily, that is, in preserving this structure. In the classical counterpart, it is natural 
to require that the Poincar6 group acts by canonical transformations, which implies a 
phase space structure of the homogeneous space S. Such a structure exists if we are able 
to define the Poisson bracket between two functions on S. Manifolds with such a 
structure are called symplectic manifolds, the expression phase space being employed for 
symplectic manifolds of standard classical mechanics. As everybody knows, an ordinary 
phase space is built from a configuration space B and the corresponding speed space (one 
at each point of B). In the mathematical jargon, this phase space is the tangent bundle 
with B as a base and the speed space as a fiber. A symplectic manifold is a more general 
being which lookslocally like a phase space 5. This means that, locally, one can define 
coordinates ql, q2 ..... qn, P~, P2 .... ,Pn for a point x such that the Poisson bracket {f(x), 
g(x)} is given by 

{f(x), g(x) } = Z oij(x) c)if(x) cgjg(x) (3,2) 

where o/J = - a/i. The tensor o-is called a symplectic form. It permits to define the 
symplectt'c scalar product of two tangent vectors 6 

(dx, ~x) = -  (t~, dx) = Z (rij(x) dx i t~xi (3,3) 

The simplest example of a non trivial symplectic manifold is provided by an ordinary 

sphere. If u denotes a point of the sphere and du, t~u two tangent vectors at this point, 

4More rigorously, the structure is that of a projective Hilbert space (a state is a ray, that is a unit vector 
defined up to a phase). The cohomology of the group is such that every unitary projective representation 
is provided by a unitary action of ga (or its covering group) on the underlying Hilbert space. The 
situation is more subtle in the case of the Galilei group. 
5In particular, it is even dimensional. The corresponding canonical transformations are often called 
symplectomorphisms. 
6Remember that if we define on a manifold a non degenerate symmetric form giffx) - gji(x), it provides 
us with a scalar product of two tangent vectors dx and t~x: (dx. tSx) = ~, gij(x) dx ~ tSxJ. The manifold is a 
Riemannian manifold. 
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the symplectic scalar product is given by 

(du, cSu) = u. (du  x 8u ) (3,4) 

Clearly, this is an antisymmetric product; if the radius of the sphere is one, the expression 
(3,4) is the familiarsurface element of the sphere sint9 dO drp = - dz dcp where z = cost9. 

It follows that cp and z are local canonical coordinates ( they are not defined for z = __+1). 

Quantum free elementary system 

Poincar6 invariance. 

The set of states is a projective Hilbert 
space. 

go acts unitarily. 

go acts irreducibly. 

Classical free elementary system 

Poincar6 invariance. 

The set of states is a generalized phase 
space (a symplectic manifold). 

~o acts by symplectomorphisms. 

go acts transitively. 

Table 1 

It is clear that the symplectic scalar product (3.4) is invariant under any rotation of 
the sphere; therefore, the rotations preserve the symplectic structure of the sphere: they 
are  canon ica l  t rans format ions .  This has an important consequence for the classical 
momentum associated with the rotation group, namely the angular momentum J. Let us 
fix the length of the angular momentum. The possible values of this momentum form a 

sphere of radius IJI. In terms of the canonical symplectic coordinates cp, Jz, the 
components of J are: 

Jx = X [ IJ 12 " Jz 2 c o s  rp 

Jy = ~[ IJI 2 - Jz  2 s inrp (3,5) 

~z 

The Poisson bracket {cp, Jz}being equal to 1, the reader will have no difficulty to check 
that 

{Jx, Jy} = J z ,  {Jy, Jz} = Jx ,  {Jz, Jx} = Jy (3,6) 
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This calculation was made by Kramers to propose a classical model for spin; the sphere 
being two-dimensional, Kramers declared that spin was corresponding to one degree of  
freedom .7 

Let us come back to the role of the Poincar6 group in the definition of an elementary 
system. This role is summarized in Table 1. 

The problem to be solved is the following one: how to find a symplectic 
homogeneous space of the Poincar6 group such that the group acts in preserving the 
symplectic structure. A simple theorem due to Kirillov gives all symplectic homogeneous 
spaces of any Lie group 8. They are known as coadjoint orbits because they are the 
orbits of the group acting on the dual vector space of the Lie algebra (the orbits in the Lie 
algebra itself are the adjoint orbits; for simple Lie groups, as the rotation group, the 
adjoint and coadjoint orbits can be identified with the aid of the Killing form). Let us 
explain concretely, in a simple case (a non simple group) the difference between the Lie 
algebra and its dual vector space. We consider the Euclidean group of the ordinary space. 
The physicists denote usually by Ji and Pi the "infinitesimal generators" of this group; the 
generic element of the Lie algebra can be written J.o9 + P.a. As a vector space, the Lie 

algebra is made of couples (o~, a) and its dual is made of couples (J, P). The Euclidean 
group being not simple, we must expect a different action of it on the Lie algebra and its 
dual. Let us perform, for instance, a translation b. We have 

exp(-iP.b) (J.og+ P.a) exp(iP.b) = J.co + P.a + (b, 09, P) (3,7) 

where the last parenthesis denotes the mixed vector product. This implies that the 
transformation is given by 

(09, a) ~ ( 09, a + b × 09) "rotational part" unchanged 
but (3,8) 

(J, P) ~ ( J - b x P, P) "translational part" unchanged 

If we had performed a rotation R followed by a translation b, that is the most general 

Euclidean transformation, the formulas (3,8) would have the vectors a~, a, J and P 
rotated by R. Let us concentrate on the coadjoint action. First, the point (J, P) = (0, O) 
is invariant; the corresponding orbit is just that point; it is a trivial symplectic manifold of 
dimension zero. The point (J, O) with IJl# 0 is transformed into (R J, 0); the orbit is a 
sphere of radius IJI. Finally, it is possible to prove that the other orbits are of dimension 
four: they are defined by the equations 

p2 = constant (non zero) and (J.P)/IPI = constant (3,9) 

7It is interesting to underline that the square root of I./I 2 - Jz 2 has its quantum counterpart, the square 
root of j(j+ l ) - re(m+1). 
8See Appendix A for a proof that every coadjoint orbit is symplectic. 
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One recognizes the kinetic energy and the helicity. We see that the helicity observable is 
already obtained with the Euclidean subgroup of the Poincar6 group. 

We arrive now at the coadjoint orbits of the Poincar6 group itself. Practically, they 
can be described in the following way, quite analogous to the one used for the Euclidean 
group. Instead of (J, P) in a 6-dimensional space, we have a couple (Mttu Pp) in a 10- 
dimensional space. If we discard the case where the four-vector Pp is zero 9, the 
classification of orbits is obtained with the aid of the Pauli-Lubanski vector: 

W;~ = 1/2 E2#vp M#v p p, where eis  antisymmetric and e0123 = 1 (3,10) 

by the following table, where T, L, S, 0 denote the type of 4-vectors, namely time-like, 
light-like, space-like and zero. 

dimension of the orbit interpretation 

T S eight 

T 0 six 

L L six 

L 0 six 

L S eight 

S T eight 

S L eight 

S S eight 

S 0 six 

spinning massive particles 

spinless massive particles 

massless particles with helicity 

massless spinless particles (unphysical?) 

unphysical 
I t  

spinning tachyons 

spinles s tachyons 

Table 2 

Let us note that the (T)(O)-orbit gives back to the usual six-dimensional phase space 
of classical point particles1°; the (T)(S)-orbit is a sphere bundle on R 6, the sphere being 
identified with the Kramers spin sphere. The phase space for a spinning point particle is 
obtained from the ordinary six-dimensional phase space in associating a Kramers'sphere 

9When Pp is zero, we are left with the classification of the coadjoint orbits of the Lorentz group. Since it 
is a simple group, we could classify the adjoint orbits as well. This is equivalent to classifying the 
(homogeneous) electromagnetic fields (E, B). Because of the two invariants E 2 - B 2 and E.B, the general 
orbit is four-dimensional. There is a single orbit of dimension two (when both invariants are zero). 
10In non relativistic mechanics, the ordinary phase space is the homogeneous space G/H where G is the 
Galilei group and H the group generated by time translations and rotations. 
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with each point. We must recall that the spin and the helicity can take any value in this 
classical model of elementary particles.It is also important to emphasize that, contrary to 
the classical approach of relativistic classical mechanics, space-time is not an ingredient of 
the theory. The question of rediscovering space-time and worldlines from the coadjoint 
orbits will be discussed later on. The advantage of this approach is to give more 
importance to the momenta. The fact that they obey laws of conservation and additivity 
makes this theory closer to experimental aspects. Finally, I must say a few words about 
the quantization problem itself. It is clear that quantizing means here finding a unirrep of 
the Poincar6 group. The Kostant-Souriau quantization procedure itself can be used to 
build explicitly a representation of a given Lie group from an arbitrary coadjoint orbit. 11 
This can be used to solve a quantum problem when we know a dynamical symmetry 
group of it. 
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llFrom my point of view, when I suggested this classical model for elementary particles, the problem of 
quantization was solved ipso facto, quantizing becoming equivalent to finding a unitary representation of 
the Poincar6 group. But quantization is not only a mapping associating a quantum object to its classical 
counterpart; it also means a procedure which permits to associate a Hilbert space with a symplectic 
manifold in such a way that the symplectomorphisms (i.e. the canonical transformations) are represented 
unitarily. The Kostant-Souriau quantization is such a procedure. It was discovered independently by these 
two authors, the first having in mind the building of representations of Lie groups, the second the 
realization of the Dirac programme of replacement of Poisson brackets by commutators. We give in 
Appendix B, as an example, the quantization of the sphere d la Souriau. 
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CHAPTER 4 

L O C A L I Z A B I L I T Y .  T H E  P H O T O N  SCANDAL.  
Q U A N T I Z A T I O N  H E L P L E S S !  

The photon is not localizable! It is not exagerate to say that almost every physicist 
knows this fact but does not care. A position operator is not an important object. The 
important operators in quantum physics are the energy, the linear and angular momenta. 
The spectroscopist, whatever is his field (particle, nuclear or atomic), is not concerned 
with position! The position operator is only for students and, more precisely, only for 
beginners in quantum mechanics.., and for people interested in the sex of  the angels, this 
kind of  people you find among mathematical physicists, even among the brightest ones as 
Schr6dinger or Wigner... 

The photon is not localizable! 

Why is it so? What does it mean? It is the purpose of  this chapter to examine in 
some detail this situation. First I will give a very simple argument to show why the 
photon cannot be localized. I f  the photon was localizable, the squared modulus of  its 
associated wave function, namely the intensity of the Maxwell field would provide us 
with a probability density of finding the photon in some place. That it is impossible is a 
direct consequence of  dimensional analysis: no quantity of the kind 

hmcnep A 2 

where A is the vector potential and h, c, e are the usual fundamental constants, can be 
given the dimensions of  the inverse of  a volume. The replacing o f A  2 by E 2 + B 2 would 
not solve the difficulty. 1 

II tried vainly to find such a simple argument in literature. See [B.L.P], p.12 for a longer argument based 
on covariance (no reference to the Newton-Wigner's notion of localizability in this textbook). It is 
amusing to note that there are textbooks stating that E 2 + B 2 is proportional to the probability density 
of finding a photon in some place, but they are very prudent not to give the factor of proportionality. 
Dimensional analysis would oblige us to use the gravitational constant in this factor. There is another 
fact relating electrodynamics and dimensional analysis: there is no scale in Maxwell equations, a fact 
which is related with the conformal invariance. I am grateful to L.C. Biedenharn who drew my attention 
to the Casimir paradox:" Let j(x,o)) and p(x,co) be charge-current density distributions, varying with time 
as exp(-icot), and vanishing outside a sphere of radius R. Then it is always possible to find another 
charge-current density (]1,Pl) vanishing outside a radius R I <R such that the radiation field outside R is 
identical to that produced by the original sources" [B.L1]. We find in this reference a picturesque way of 
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There exists another argument I have found in the literature [Kra] but which is not 
convincing. I will say why. Suppose that we want to describe the photon states by the 
transverse potential A (k) 

k. A (k) = 0 

It is clear that the operator i ~ -  does not preserve the transversality condition since 

k. i ~ k  A = i ~ k  ( k.A ) - iA # 0  

This argument only proves that the operator i~-ff cannot be interpreted as a position 

operator but nothing can be concluded about the non localizability of the photon. 
However, we will see that it is the transverse character of the wave function (related with 
the spin of the photon) which is responsible of the non localizability property. From the 
Newton-Wigner study of localized states, it is clear that if the photon was spinless it 
would have localized states! 

Before recalling the postulates of Newton and Wigner and the ones of Wightman, 
let us discuss the meaning of localizability and its relationship with the position operator. 
Unfortunately, very often, the two notions are strongly associated and it is said, for 
instance, that the photon is not localizable because it has no position operator. In fact, to 
have a localized state means that, given a domain S in the regular space, there is a state 
for which we can say that the probability for the particle to be in S equals one. From 
Newton and Wigner's work, if a particle has localized states, it follows that one can 
define a set of three commuting operatorswhich can be interpreted as the components of 
the position operator. Therefore, if a particle has no localized states, we have the 
following alternative: either it is impossible to measure any coordinate, that is there is no 
position operator, or the position operator has three non commuting components. We will 
see the advantages we get in choosing the second part of the alternative. 

Let us give a brief description of the Newton-Wigner postulates. The authors 
supposed that the states which represent a particle 2 in a state localized at x = y = z = 0 
obey the following conditions: 
a) they form a linear set So, 
b) So is invariant under rotations around the origin and reflections both of the spatial and 
of the time coordinates, 
c) if v i s  a state of So, a space translation of V shall make it orthogonal to all states of So, 
d) some regularity conditions under boosts. 

stating this theorem and due to Casimir himself:"Suppose an elephant in a spherical cage is illuminated 
only by coherent light sources inside the cage. Then the spectators outside the cage cannot be sure that 
there really is an elephant: the cage might be empty but for a peculiar charge-current density at the center 
~f the cage." 
or, more generally, an elementary system (as in its paper of 1939, Wigner is insisting on this notion). 
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All these conditions seem very natural; the dimension of the space So is left 
arbitrary to include spin variables. Obviously, localized states are not elements of the 
Hilbert space and orthogonality is understood in the generalized sense involving the delta 
function. Wightman postulates, although inspired by Newton's and Wigner's ones, were 
more rigorous and concerned Hilbert spaces carrying representations (irreducible or not) 
of the Poincar6 or Galilei group. This is in contradistinction of  the Newton-Wigner 
approach were spinning particles were described by Bargmann-Wigner equations. The 
Wightman postulates were the following ones. If Si denotes any Borel set in the ordinary 
space (denoted by R 3) and E(Si) the projection on the Hilbert subspace of all states where 
the system is localized in Si), we must have: 3 

i) E(SlC~ $2) = E(S1) E(S2), 

ii) E(SloS2)  = E(S1) + E(S2) - E(SlC~ $2), 

iii) E ( S I u S 2 u S 3  ...) = E(S1) + E(S2) + E(S3) + ... for disjoint Borel sets, 
iv) E(R 3) = I (the unit operator), 
v) E( RSi + a ) = U(a, R) E(S) U(a, R) -1, w h e r e  (a, R) denotes a Euclidean 
transformation in the unitary representation of the kinematical group, 
v/) regularity conditions for boosts, 
vii) invariance with respect to time reversal. 

Let us give a rrsum6 of the main conclusions of Newton and Wigner for relativistic 
particles: 
a) localized states exist for all spinless particles (including the massless ones), 
b) they also exist for spinning massive particles with the following "disease": if a state is 
localized for one observer, it is no longer localized for another one (localized states are 
not transformed into localized states under a Poincar6 boost), 
c) they do not exist for massless particles with helicity (except for a four component 
neutrino). In particular, there is no localized state for a photon nor for a two component 
neutrino. 

Let us make some comments about these results. 
a ) A localized state for a spinless particle of mass m is not described by a delta 

function, but rather by 

IF (r ) = (re~r) 5/4 H5/4(i mcr) 

where H denotes a Hankel function. The corresponding position operator (the so-called 
Newton-Wigner operator for a scalar particle) is given by 

i a P q =  ~)'~- i 2p ~ 

The departure from the usual SchrOdinger operator is only due to the fact that q must be 

3The system of projections form a system of imprimitivity in the language of Mackey. 
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a3 
Hermitian with respect to the invariant m e a s u r e - ~  of relativity, instead of the measure 

d3p. That explains why the Hankel function has replaced the traditional Dirac delta 
function. About this formula, Wigner writes, after having underlined that it is the Fourier 

transform of ~tt(p) = P~o." "v/(p) should be orthogonal not only to the wave functions that 

arise from it by purely spatial displacement, i.e., to Vx(P) = P~o exp(ip.x) ... but also to 

those that result from it by an additional time displacement by t, Vx,t(P) = ~ o  exp( 
i(p.x -pot)), as long as the space-time vector is within the light cone, i.e. as long as 
ct<x. This is not the case and this shows that at leastparticles of  spin zero cannot be truly 
localized. And the situation is pretty much the same for  higher spins. This is the other 
reason I believe our present idealized space-time concept will undergo modification" 
[Wig3]. This is a very pessimistic (recent) conclusion for the work made in collaboration 
with Newton. 

Obviously, the delta function is instinctively associated with a straight worldline in 
Minkowski space-time and, already in classical relativity, physicists encountered 
difficulties in trying to associate a given worldline to a particle with extension, that is to 
say to define in a canonical way a worldline in a "worldtube". There is no "center of mass 
motion" on which all observers would agree. In other words, there is no way of 
assigning a sharp worldline with a given particle with internal structure. 

b) For spinning particles, the situation is worse in classical relativity because the 
center of mass does not coincide, for a given observer, with the center of rotation! [Pry]. 
We will not enter into details about the expression of the N.W. operator for spinning 
particles. 

c) Conclusion c is difficult to accept, at least for three reasons. First, there are many 
experimental ways of detecting photons in some place and we must be able to define a 
position operator on the Hilbert space of the photon states. Second, if we want to have all 
kinds of particles on the same footing, we must have a position operator for all of them. 
Third, Einstein built Minkowski space-time with the aid of light signals; it follows that 
there must exist a way of deriving space-time structure from the Hilbert space of the 
photon states. It is remarkable, however, that Einstein's light signals were made of scalar 
waves and that the non localizability is precisely due to the polarization of light! We are 
faced with a historical paradox: in 1905, Einstein building Minkowski space-time with 
the aid o f  light signals and, simultaneously, endowing light with a structure forbidding 
him to build it. t We will analyze this situation later on. 

It is interesting to mention that all the difficulties encountered by Newton and 
Wigner are also present in the underlying coadjoint orbit model of classical particles. 
Without entering details, the situation is as follows. 

a) For spinless particles (even massless), it is possible to associate a given straight 
worldline in the Minkowski space-time with each point of the coadjoint orbit. 
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b) For a spinning massive particle, each given Galilean observer can associate with 
a given classical state a well defined worldline. Unfortunately, all these worldlines do not 
coincide and lie in a tube which has an extension of the order of  the Compton wave 
length. 

c) For a massless particle with non zero helicity, the situation is really a scandal 
because the localization becomes worse: the wordlines associated with two Galilean 
observers are at a distance of  the order of the wave length, but the wave length is, as 
everybody learnt from the Doppler effect, as large as we want! The set of  all worldlines 
has an infinite extension in space-time! 4 In other words, there is no way of  deriving the 
Maxwell field (i.e. the first quantization theory of the photon) from a classical model; 
there  is no sat is factory  quant izat ion p r o c e d u r e  f o r  the one  pho ton  states.  A very simple 
calculation about this fact is given in Appendix D. 

History of  physics is responsible of  the fact that the first quantization of  the photon 
is usually ignored in textbooks and the solutions of  Maxwell equations are very rarely 
presented as describing the Hilbert space of  the photon states. 5 Photons are rather 
introduced as excitations of the Maxwell field or as modes in a cavity. More surprisingly, 
the photons are very often supposed to be a l w a y s  in an eigenstate of  the energy- 
momentum 6, a fact which is in contradiction not only with the Hilbert space structure of  
the set of  a one particle quantum states (the superposition principle) but also with 
experiments since photons have a natural width in their spectrum. In many textbooks, 
after having defined photons as eigenstates of  the energy-momentum, the authors are 
referring to photons in a given angular momentum state, as if a photon could be 
simultaneously in an eigenstate of both angular and linear momenta (two non commuting 
observables)! 7 

Another surprising fact concerns the speed  of the photon. The speed is a classical 
concept, the photon is not. How to associate two such concepts? In ordinary quantum 
mechanics, the speed of  a particle is obtained by using the commutator of  the position 
operator with the Hamiltonian. Since the photon is said not to have any position operator, 
this is not a way to define the speed of the photon. There is no logical way to arrive at 
the ratio p/H,  as it is the case for a massive particle 8. The only definition we are left with 
for the speed in quantum mechanics was given by de Broglie who interpreted it as the 

41 was aware of the difficulties b and c as soon I proposed the Poincar6 group model of elementary 
particles. My feeling at that time was that in order to solve the difficulty, we had to reject the Poincar6 
group itself. To-day, I am convinced that we have to keep it, but to only reject Minkowskrs space-time, 
as it will be discussed later on. 
5One of the nicest exceptions is provided by reference [Bia], a textbook which has the advantage of being 
rigorous and giving all quantization procedures of the Maxwell field. 
6Let us quote, for instance, Pais: "A photon is a state of  the electromagnetic field with the following 
properties 1. It has a definite frequency v and a definite wave vector k. 2. Its energy E, E = h v and its 
momentum p, p = h k satisfy the dispersion law E = c/p/characteristic of a particle of zero rest mass. 
3. It has spin one...The single particle states are uniquely specified by these three properties"[PaJl, p. 
407]. I quoted Pais because he gives here a concise idea of what is in mind of almost all physicists. 
7Surprisingly, this mistake can be found in textbooks written by quite well known physicists. 
8We could explain the attitude of some physicists about the lack of localizability of the photon in the 
following way. If a photon is always in a given energy-momentum state, it corresponds to a plane wave 
state which fills up the whole space homogeneously; it follows that the photon is everywhere... 
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group velocity. It is well known that an arbitrary wave packet of  electromagnetic waves 
has a group velocity which is less than c. Therefore,  according to what we have learned 
in special relativity, there exists always an observer for which the photon is at rest.. 9 This 
is not paradoxical. The superposition principle tells us that a photon can be in a stationary 
wave state, say eikz+e "ikz = 2cos kz. What would be the speed o f  such a photon? If  it was 
c, what would be the direction of  this speed? Towards the positive or the negative z axis? 
It is clear that the only correct answer is that such a photon has speed zero 1°. All these 
remarks justify amply the last part of  Einstein's sentence given at the end of  Table 4 of 
Chapter 1.11 

In order  to illustrate all the difficulties encountered by the photon concept, let us 
quote and comment  parts of  an interesting text of  M. Sachs, in [Hoo]. It starts as follows: 
"A very old, yet unresolved problem in physics concerns the basic nature of  light... Still, 
logical dichotomy and mathematical inconsistency remain in the usual answers to the 
question: What, precisely, is light?" A few pages later, he is underlying conceptual 
difficulties: "But a single photon, which, by definition, has a precise energy, is described 
mathematically in terms of  a plane wave - a function that has an equally weighted value at 
all points in space at any given time. With this description, then, one would have to say 
that the single photon is everywhere,  rather than somewhere  - although it can be 
annihilated somewhere by looking for  it at that particular place! Along with this spatial 
description o f  the single photon, it is specified to be continually travelling at the speed o f  
light. To the (perhaps naive) inquirer, the logical difficulty appears in trying to answer the 
question: i f  the photon is everywhere at the same time, and is travelling continually on its 
own at the speed o f  light, where is it going to?" 

This quotation has the interest to underl ine tha danger  of  the two standard 
statements o f  textbooks: a) the photon travels at the speed o f  light; b) it has a given 
energy. In rejecting these two properties (which contradict the postulates of  quantum 
theory), the difficulties described by Sachs disappeared. 12 

9Heitler [Hei, p.16] arrives to a conclusion closed to mine, but stated prudently:"If 
the[electromagneticlfield differs from zero only with a certain given volume V, and if no charges are 
present inside the volume .... the momentum G and energy U of the field form a 4-vector G# which 
behaves as regards its transformation properties like the energy and momentum of a particle... A spherical 
light wave emitted from a point source.., has a momentum zero but a finite energy." 
lua fact which is not accepted even in excellent textbooks: "There is no inertial frame in which the 
photon is at rest." [Wic,Section 4.7]. This refusal is due to the frequent confusion between a frame (in the 
ordinary space, which is an affine space) and a basis (in momentum space, which is a vector space). See 
Chapter 8, Table 1 of the present book. Unfortunately, the expression "rest frame of a particle" is very 
common but not satisfactory in quantum physics: "frame" implies a position (the origin of the frame) and 
"rest" implies a zero momentum. But momentum and position cannot be defined simultaneously. In fact, 
what physicists have in mind when they speak of a "rest frame" is a rest basis in momentum space. 
11Se e [Str] for difficulties encountered in textbooks about the photon concept. (note that the author of 
this article misunderstood the concept of localizability of particles). It would be tedious to quote all 
contradictions which can be found in the main textbooks. 
12In the same text, Sachs also says:"[The photons] cannot be slowed down or speeded up because they 
have no inertial mass; They can only be stopped, by annihilating them.., they have the peculiar un- 
particle-like feature of being without inertia since no external force can make them change their speed by 
arbitrary amounts." Such a remark is really strange. In general relativity, we know that the source of the 
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There is one result of the Newton and Wigner paper which is of interest and which 
will be discussed later on. It concerns the Newton-Wigner position operator for a Dirac 
particle. It has a complicated expression we will not reproduce here. It satisfies the 
equations: 

[qi, qj] = 0 

dq 
= i [H,q] = i [co~.p + flmc 2, q] = H-lp 

instead of 

dx 
-.~ = co~ 

which is unacceptable since the eigenvalues of any component of the r.h.s, are +c. 
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gravitational field is the energy-momentum, not the mass; it follows that inertia is also described by the 
energy-momentum. If we say that to be at rest means that the momentum is zero, the photon cannot be 
at rest, but its speed can have any value less than or equal to c. 
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~HAPTER 

A POSITION OPERATOR FOR THE PHOTON. 
GIVING UP THE C O M P L E M E N T A R I T Y  PRINCIPLE.  

Some years ago, in teaching symmetry at the physics department of the Technion in 
Haifa, I decided to illustrate the classical Noether theorem in treating the problem of an 
electrically charged particle in the field of a Dirac magnetic monopole; since the magnetic 
field 

B = gr-3r (5,1) 

has the same magnitude in all directions, we have a spherical symmetry which implies, 
from Noether's theorem, the conservation of a vector which is naturally called the angular 
momentum J. This vector can be obtained in a gauge invariant way 1, without specifying 
the vector potential. Its expression is well known; it is 

r 
J = r × ( p -  sA) - s 7 

where we set, for convenience, 

(5,2) 

B - g curl A ,  s = eg (5,3) 

One easily verifies that the components of J satisfy the Poisson brackets relations 
of the angular momentum. To get the expression of the angular momentum in quantum 
mechanics, we only have to replace r and p by their usual corresponding operators. I t  
fol lows that the product s = eg is necessarily quantized: it is a multiple of 1/2. That it is 
just a consequence is not trivial because it does not follow from the commutation relations 
alone but, rather, from the operators r and p themselves. 

Remembering a beautiful work by Lipkin, Weisberger and Peshkin [L.W.P] who 
used the commutation relations of Ji and the ri and the properties of the Euclidean group 
generated by these operators, I tried to improve their proof in choosing a larger group, in 
order to shorten the argument. I was pleased to see that the operators Ji, ri, r = I~ and Ki, 
where 2 

lsee Appendix C. 
2Ji and Ki are the infinitesimal generators of the Lorentz group. If we denote by M#v these generators, 
the Ji generate the rotations ("magnetic part" of M#v) and the Ki the boosts ("electric part" of M#v with 
a change of sign). 
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1 
K = ~ [ r (p  - s A )  + (p  - sA) r ]  (5,4) 

span the Lie algebra of the Poincar6 group, with an odd interpretation since (r, ri) plays 
the role of the energy-momentum. The "mass" (the square root of r 2 - r 2) is obviously 
zero and the "helicity operator" is just a number given by 

J.r 
= s ( 5 , 5 )  

r 

Since we know, from Wigner's work on the Poincar6 group representations, that the 
helicity is quantized, s is certainly an integer or half an integer. 3 

Let us now perform the following canonical transformation of the representation of 
the Poincar6 group we have just arrived at: 

r - - 9 - p  

p ~ + r  

(5,6) 

The expression p - s A ( r )  becomes r - s A ( - p )  and the generators now read 

J = (r - s A ( -p))  x p  + s p-- (5,7) 
P 

1 
K = ~-[p( r -  s A ( - p ) )  + ( r -  sA( -p ) )p]  (5,8) 

and let us now interpret the translation generators as the energy and the momentum of a 
particle which is massless with helicity s. In examining the expression of J ,  we are 
tempted to say that R = r - s A ( - p )  plays the role of the position operator and it is natural 
to investigate the validity of such an interpretation since we know that such particles have 
no Newton-Wigner position operator. 

First, we note that, according to Eqs (5,1) and (5,3), when s tends towards zero, R 
becomes just r, the usual position operator for a spinless particle. It follows that the 
difference R - r is a small correction due to the spinning property. Now, from what we 
have seen in the last chapter, if R has the interpretation of  the position operator, its 
components cannot commute. In fact, we have 

[ R i, R j  ] : - is Cijk (5,9) 

3The product eg could be interpreted as the "radial component" of the angular momentum. Heuristically, 
we could say that its spectrum is discrete as it is the case for any component. However, this is not a 
proof: the radial component is in fact a scalar operator under rotations, that is it commutes with the three 
components of./; therefore, the commutation relations cannot give any information on its spectrum. 
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We know the impossibility for a massles particle to have p = 0. It follows that there 
is no state for which the Ri's  are commuting and, consequently, such a particle has no 
localized state, a result which is in agreement with the Newton-Wigner result 4. If we are 
interested in the photon, which has two helicity states, we only have to replace s by the 
helicity operator (eigenvalues + 1). 

Let us show that this operator is a reasonable candidate as a position operator for 
spinning massless particles. 

a) There exists already a situation where non commuting components occur for a 
position operator: I am referring to the coordinates of the center of the circular trajectory 
of an electron in a homogeneous magnetic field [L.L, Chapter XVI]. In my knowledge, 
no objection has been made about such a situation. This can be considered as a good 
reason to accept (or at least not to reject) the same property for the position of a particle. 
As we saw in our problem, the non commutativity comes from the helicity of the particle; 
this is a small effect as it can be seen from Equation (5,9) in introducing explicitly the 
reduced Planck constant h. 

[g i , R j] =- i Ifs ei jk~ (5,10) 

Let us consider the photon case; s has + h'as eigenvalues; it follows that the modulus of 

the right hand side of Eq.(5.10) is at most equal to ;~2/4jr2, where Z is the wave-length 
h/p. This has a physical consequence which is quite acceptable: localizability, that is the 
possibility of  measuring simultaneously the three coordinates of the position, is 
increasing together with the frequency of the photon. In other words, the particle 
character of the electromagnetic field is sharper and sharper when the frequency of the 
wave is increasing. Conversely, the notion of a trajectory becomes more and more fuzzy 
when the wave-length is increasing. Such a conclusion is different from the 
complementary principle because the photon is always present, whatever is its energy, 
but the classical character of a point particle, which is an approximate description, is a 
good or a bad description, depending on the energy of the photon. The goodness of the 
"classical trajectory" approximation can vary continuously. 

b) Let us consider a photon which is almost in an eigenstate of the component P3 
of the momentum. The uncertainty relation between R1 and R2 reads 

A R] A R2 > If I<p-~->l ~ ~t, 2 (5,11) 

This means that when we know that a photon is running in a given direction, its 
transverse position cannot be defined exactly. 5 

4Obviously, here, in contradistinction with the paper of Newton and Wigner, the non localizability does 
not imply the non existence of a position operator. 
5It must be underlined, however, that Rand R2, separately, commute with P3. 
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It turns out that Eq.(5,11) has an important consequence about the electron slit 
experiment. The reader has probably kept in mind the criticism developed in the previous 
chapter on this subject. Any photon scattered by an electron will have a fuzzy 
localization, translating itself a fuzzy localization of the electron. This fuzziness increases 
with the wave-length. Owing to Eq.(5,11), we no longer need the classical wave theory 
to explain the reappearing of the interference pattern when the wave-length of the light 
source is increasing. The photon language is sufficient, whatever is its energy. 

Before investigating in a deeper way the proposal of a new position operator, it is 
worthwhile to say a few words about the duality between the spinning massless particle 
and the Dirac magnetic monopole. Here, as in [Bac3], this duality was presented with the 
aid of the Poincar6 group. It was also discussed by Schwinger in the introduction of 
[Schw2] and in a more recent article by Barut and Bracken [B.B], but both without any 
reference to a position operator. 

When I wrote my first article on that subject [Bac3], I was probably a little 
shrinking. I was convinced that I had a nice proposal, but I did not know what to do with 
it. It is only after exciting discussions with Connes that I tried really to understand what 
would be the consequences of such a new operator for the photon. I was led to state the 
two following facts: 

i) the needness of changing the Newton-Wigner-Wightman (NWW) axioms for all 
particles. 

ii) the new position operator for the photon was the analogue, for the Maxwell 
equations, of the position operator proposed by Schr6dinger for the Dirac equation. 

Then I decided to publish these new conceptual observations in a new article 
~[Bac4]. As soon as it was sent to the Editor, I became aware of two new things: 

i) The above photon position operator had already been introduced in the excellent 
book by Bialynicki-Birula and Bialynicka-Birula [Bia], but without referring to it as a 
position operator. They denoted it by i D. 

ii) The same position operator has been discovered long time before me by Jadczyk 
and Jancewicz[J.J] 6. More precisely, these authors defined a position operator for any 
spin one particle. Their operator is a particular case of the general one proposed in [Bac4] 
and which will be discussed in the next chapter. 

It is interesting to underline that the Bials 7 introduced their operator D in their 
chapter on the classical electromagnetic field; it plays an interesting role in the Fourier 
analysis of the field. Let us examine why; it will help to understand the meaning of our 
A ( - p ) .  

For this purpose we need a lemma. 
Lemma: If n denotes a unit (real) vector, every complex vector y = Yl + i Y2 satisfying 

6I am grateful to D. Kastler for having mentioned this work to me. 
71 hope that these physicists will forgive me for having unified their name in such a short way. 
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n ×y  = -i y and y*.y = y12+ y2 2 = 1 (5,12) 

is obtained from a direct orthonormal basis (Yb Y2, n). 

The proof is easy and is left to the reader. We can also see readily that two 
solutions only differ from a phase factor; therefore, this phase factor can be interpreted as 
a rotation in the plane orthogonal to n. 

This lemma has the following corollary. 
Proposition: Two self-dual tensors (i.e. antisymmetric tensors satisfying a fly = -ia~tv) 
which verify the condition 

p# a#v = 0 (5,13) 

where p# = (p, p) is a (future 8) light-like vector, only differ from a phase factor. 

Here also the proof is simple: if e denotes the electric part of a#v, the condition of 
self-duality implies that its magnetic part is i e; moreover, Eq. (5,13) implies 

P (5,14) n x e = -i e with n = P 

and the proposition follows from the lemma. 

Let f#v  (x) be the (real) classical Maxwell field satisfying the two equations 

O#f#v = O, oqUf liv = 0 (5,15) 

All the information contained inf i s  also contained in the self-dual field F defined by 

F = f +  if"  (5,16) 

Let us write the Fourier decomposition of F. 

a3 
F#v(X) = fa~p-~a#'~(p)e-~p.x + ativ(p)eip.x] (5,17) 

The upscripts + and - correspond to the future and past half cone, respectively. The two 
tensors a ÷ and a- are both self-dual and satisfy both Eq.(5,13); therefore our proposition 
applies and we can write 

ap+v(p) = a#v(p) f +(p) 

aliv(p) = a#v(p) ~ ( p )  

8The time component Po is positive. 

(5,18) 
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where a#vis supposed to be normalized as follows 

aUV(p )av*;t(P ) = P#P Z (5,19) 

and is now uniquely defined up to a phase factor. 

Let us denote by e(p) the electric part of this tensor and let us examine how this 
vector varies with p. We may write 

~ i  ) = ai(P) ej + fli(P) e~ + N(p) pj. (5,20) i 

By using the orthogonality of the vectors e, e* and p, we obtain 

~ i  ) = ai(p)ej(p) - ei(p)pj. (5,21) - i p-2 

If we decide to change e by a phase factor e-i¢(P), the vector field a(p) transforms as 
follows 

o~(p) --9 o~(p) + 170(p) (5,22) 

and such a change induces the following transformations on the functions f+ andf.: 

f+(p) ~ e-iC(P)f+(p) 
(5,23) 

f-(p) ~ ei¢(P) f_(p) 

We are led to introduce the covariant derivatives 9 Di of the functions f+: 

Djfs(p) = ~)-fi~fs(P) - i saj(P)fs(p) (5,24) 

This has the advantage that a change of phase induces on the functions f_+ the 
transformations 

Djf s(p ) ---> eis¢(P )f s(p ) (5,25) 

in such a way that expressions like f ' D / f o r  (DiD(Dif) are phase independent. If we 
compute the commutator of the derivatives Di, we obta in  

9Bials mention, unfortunately without reference, a work done in 1973 by Staruszkiewicz on the 
interpretation of these covariant derivatives (p. 131). 
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[Di, D j] = i se'" Pk (5,26) tJ~ p3 

that is the iDi's obey the same commutation relations as our Ri's. In fact, these operators 

are identical as it can be seen from Eq.(5,24). Bias'vector function o~(p) is nothing else 
than our "vector potential" -A(-p) of Eq,(5,8). This can also be seen in the following 
way: one can compute the components of the energy-momentum tensor in terms of the 
field a~_v. (P) and.the functionsf_+(p) and find from them the generators of the Poincar6 
group. Blals obtain 

I-i= £f- e-m(p)fs(p) 
l 1 

1' = zfa~p p ~  (P)A(P) 

d3p i P f~s(p) fs(p)] J = zfU~p-~s(p)(D×p)fs(p) + s 

(5,27) 

d3p i 
= + 

which prove our statement. 10 

Eqs (5,27) have an immediate quantum interpretation in QED in replacingfandf* 
by the corresponding annihilation and creation operators. In this framework Eqs (5,23) 
describe the well known fact that the creation and annihilation operators are defined up to 
a phase. It would be interesting to examine more carefully the problem of the gauge 
choice in the magnetic monopole vector potential and the role of the Dirac or Schwinger 
string. 

The Bials operator, as my operator R are acting on a two-component object. It is 
natural to look for an expression of the position operator corresponding to the six- 
dimensional Maxwell field. There are infinitely many such expressions (all equivalent) 
because there are many operators acting on a complex vector space-time field F = B -iE 
which are equivalent once they are restricted to solutions of the Maxwell equations. One 
of the possible expressions is [Bac4]: 

• 0 p x s  
R = t~ -  + p2 (5,28) 

10Bials go even further since they provide us with the generators of the conformal group [Bia, p.138]. 
They also study the problem of parity and time reversal. 
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where 
( 0  0 O ) ( 0  0 i ) ( 0  -i 0 ) 

Sx= 0 0 -i Sy= 0 0 0 Sz= i 0 0 
0 i 0 -i O 0 O0 0 

(5,29) 

From Eq.(5,28), the commutation relations between the R components read 

[Rx, Ry] = - i~ -pz  (cycl.) (5,30) 

Obviously, the transversality of the field (p.F = 0) "kills" the zero eigenvalue of the 
operator S.p (no "longitudinal" photons). Therefore we are left with 

[Rx, Ry] = ¥ ip~ 3 (cycl.) (5,31) 

which is equivalent to Eq.(5,9). 

To conclude, we give here the expression of the field F describing a photon in an 
eigenstate of Rz with eigenvalue a. 

+_._ippv - PxPz G(px, Py) exp(-iapz) Fx(p) = p(p~ + p2) 

Fy(p) = ¥ippx - P~,pz G(Px, py) exp(-iapz) p(p2 + p~) (5,32) 

1 G Fz(p) = "~ (Px, Py) exp(-iapz) 

where G is an arbitrary function ofpx and py. 
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( ~ H A P T E R  6 

DEPARTING FROM N E W T O N - W I G N E R - W I G H T M A N  AXIOMS. 

Up to now, my point of view was to pretend that there is a position operator for 
each kind of particle. In declaring that the photon does have a position operator, I did not 
try to affirm that all particles were localizable. With the operator introduced in the 
previous chapter, we know that the photon - as the neutrino - is not localizable, that is, 
we cannot measure its three coordinates simultaneously. If the reader accepts this idea, he 
will agree with me that we cannot reject the NWW axioms for massless particles alone; 
there are two reasons for that: a) there must be some democracy among particles; this 
implies that we must have a unique set of  axioms for the construction of the position 
operator; b) since one can go continuously from an irreducible representation of the 

Poincar6 group go corresponding to a massive particle, to the one associated with a 
massless particle, it is natural to require continuity for the corresponding position 
operators. 

Our definition for a position operator will use a given representation of go. Eq.(5,8) 
relative to the photon suggests a solution. It reads 

K = I  (HR + RH)  (6,1) 

since the energy operator H for the photon is p. It is a simple matter to prove, from 
Eq. (6,1) and the commutation relation 

[R, H] = i P (6,2) 

that R can be expressed in terms of H and K alone, that is in terms of generators of the 
Poincar6 group. We have 

R = ~ (H-1K + KH -1) (6,3) 

It is this definition I propose to adopt for the general position operator of any 
elementary free system. Let us examine immediately the consequences of  such a 
definition for a massive particle. For that purpose, it is worthwhile to use the so-called 
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Foldy canonical expression of the generators of the Poincar6 group in terms of the 
Newton-Wigner operator q, the momentum pand the spin operator s. This is given by 

P = p  (6,4)  

H = ~ p 2 +  m 2 (6,5) 

J = q x p + s (6,6)  

1 p x s  
K = 7 ( H q +  qH)  + H+rn (6,7) 

for an irreducible representation. We readily see that, for a spinless particle, the "new" 
position operator is identical with the Newton-Wigner one q. It follows that every 
spinless particle is localizable, whatever is its mass value. 

The situation is different for spinning particles. We already saw it for massless 
particles; for massive ones, our definition (6,3) gives 

p × s  
R = q + H ( H + m )  (6,8) 

and it is unlikely that the components are commuting. In fact, we have 

P3 p.s~ 
[R1, R2] = - i H -3 (m s3+ ~ )  (6,9) 

and we arrive at an important consequence, namely, the spinning part ic les  are not 
localizable. Since all stable particles are spinning, the non localizability appears as a very 
fondamental property. Moreover it is a relativistic property as it appears when we write 
explicitly the fundamental constants c and h in Eq.(6,9). We get 

[R1,R2] = - i Kc 4 H -3 (ms3 + P3 P .s H + m c  2 ) (6,10) 

Eqs (6,8) and (6,10) are easily understood if we take the Galilean limit (c going to 
infinity), the non relativistic limit (small linear momentum) and the ultrarelativistic limit 
(large linear momentum). 

a) Galilean limit: 

R ~ q ( 6 , 1 1 )  

[R1, R2] ~ 0 (6,12) 



49 

b) Non relativistic limit: ~H - mc 2 ) 

p x s  

R ~ q + 2m2c 2 

s3 
[R1,R2] N - i tfm2c2 

(6,13) 

(6,14) 

and, for the corresponding uncertainty relation, 

h" 
AR1 AR2 >_ ~ < s 3  >1 

m ~ c  ~ 
(6,15) 

Suppose that we have an electron polarized in the third direction. In that case, we would 
have 

~2 
AR1 AR2 >- 7 "  

AR2 AR3 >- 0 (6,16) 

AR3 AR1 >- 0 

where ~ denotes the Compton wave length. 

c) Ultrarelativistic limit: 

Now H ~ p c .  If we denote by n the unit vector in p direction, we get 

n x s  
R - q + ~  ( 6 , 1 7 )  

P 

sP_2.~ [Rj,R2] N - i Kn. p3 (6,18) 

If the particle is in a state of helicity s = n.s, Eq.(6,18) coincides exactly, as it must be, 
with the one of a massless particle (see Eq.(5,9)). The same limit is obtained when the 
mass m is vanishing in Eq.(6,10). 

It is interesting to write the commutation relations in the case where the particle is in 
a momentum eigenstate (p in the third direction) 
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[R1, R2] = - i tfc 2 ~ 2  

[R2, R3] = - i tfc 4 ms l  H3 . (6,19) 

,- 4 ms2 
[R3, R1] = - i nc H3 

It is interesting to know at which value of the energy the correction R - q is 

f P maximum. According to Eq.(6,8), this corresponds to the maximum o H ( H + m )  or of 

H -  m 
its square H 2 ( H  + m)  "A simple calculation shows that the maximum is reached for the 

1+43 
value H = ~ m,  where ~ is the golden number : ¢ - 2 N 1.618; such a situation is 

a relativistic one 1 (it corresponds to an electron of speed .786 c and total energy .827 
M e V ) .  

The spin-orbit coupling. 

One of the best arguments in favour of the operator R is the way we can derive the 
expression of  the spin-orbit energy. For a non relativistic spinning particle, it seems 
natural to replace the spherical potential V(q) by V(R) in the two-component Schrtidinger 
equation. We have, up to the first order, 

Z.$ R 2 q 2 +  L . s  R N q + (6,20) 
m2c2 ,  2 m2 c2 q 

where L is the orbital angular momentum, and 

Z.$ 
V(R) N V(q) + V'(q) 2m2c2q (6,21) 

the corrective term is nothing else than the spin-orbit  energy. 

The Schr6dinger position operator for the Dirac equation. 

In 1928, when Dirac proposed his relativistic equation for the electron, this 
equation was considered as a relativistic generalization of the Schr6dinger equation, that 
is as an equation obeyed by the wave function describing the state of a u m q u e  electron. 
Many difficulties were present and they only disappeared when the Dirac equation was 

1As underlined by A. Grossmann, such an energy is moderate since it cannot permit a pair emission. 
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reinterpreted in the framework of quantum field theory. In 1930, Schr6dinger made a 
proposal in order to solve two of these difficulties [Schl, p.394]. His proposal was 
forgotten, except one of the byproducts known as the zi t terbewegung.  

The two difficulties were the following ones: 
i) the presence of negative energy states 2 
ii) the fact that any component of the speed had only two eigenvalues, namely _+c. 
Indeed, 

H = cct.p + f lmc  2 (6,22) 
and 

d X  
-d'i" = -  i[X, H] = t a x  (6,23) 

Schr6dinger proposed to replace his own non relativistic position operator X by 

X s  = H+XH+ + H_XH. (6,24) 

where the operators 17_+ are the Hermitian projections onto the space of positive (resp. 
negative) energy states. 

It is obvious that if the potential is expressed in terms of XS rather than in terms of 
X, the time evolution operator of the Dirac equation will keep a positive energy state in 
the space of positive energy states. That solves the first difficulty. Moreover, we have 

d X s  C2px (6,25) 
"d'i - =  - i [XS'H] = H 

which is a satisfactory result. 

The Schr6dinger proposal is discussed here because the operator XS  coincides 

exactly with the operator R defined by Eq.(6,3) for the representation of go 
corresponding to the Dirac equation. The space of solutions of the Dirac equation is the 

direct sum of two irreducible subspaces under go. The projections associated with these 

two subspaces are/-/+..The operator R of Eq.(6,8) is nothing else than the operator 

u+xr/+ 

2Let us quote Schr6dinger himself; we are in 1930, two years before the discovery of the positron:"Les 
valeurs propres ndgatives [de l'~nergie] n'ont pas de signification physique; on voudrait bien s'en 
ddbarrasser. Au moins il devrait ~tre impossible qu'une fonction propre "positive" se transforme au cours 
du temps en donnant naissance d des fonctions "n~gatives" ou tout au moins cette variation ne devrait se 
produire qu'infiniment lentement pour rendre suffisamment improbable l'dnorme changement d'~nergie 
2mc 2 que nous n'avons jamais observd" [Schl,vol.3]. We must also underline that the presence of 
negative energy states is not a quantum fact. As Dirac emphasized it, they are not discarded explicitly by 
the classical theory of special relativity. 
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that is the restriction of the operator X to the space of positive energy states. 

The zitterbewegung is described by the vector operator ~ = X - XS. We note that 

there exist a priori many ways of writing explicitly the vectors ~ and XS ; it could be 
worthwhile to explain why. We are interested in operators acting on the space D of 
solutions of the Dirac equation; this is a subspace of the space S of all spinor functions on 
space-time on which the operators a, X, p are defined. The restrictions of these 
operators to the space D are usually denoted by the same letters for the sake of simplicity. 
However, it is clear that there are many operators acting on S such that their restriction on 
D is XS. In the case of the massless particles, the arbitrariness of the "vector potential 
A(- p)" has the same interpretation. 

To conclude, let me give the expression of the position operator for a particle with 
1 

spin ~ governed by the two component Weyl equation 

(Po - a.p)gt  = 0 (6,26) 

It is given by [Bac4] 

R = H X  H (6,27) 

with 

1 p.p) (6,28) /7= ~- ( 1 

[Bac4] 
[Zol] 
[Schl] 
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C H A P T E R  7 

IS MINKOWSKI SPACE-TIME SUITABLE FOR PARTICLE PHYSICS? 

"There is the definite possibility that some 
future theory may be found which describes nature 
more accurately than present theory, but for which 
the differentiable manifold picture of space-time 
wouM not be appropriate..J do not believe that a real 
understanding of the nature of elementary particles 
can never be achieved without a simultaneous deeper 
understanding of the nature of space-time itself." (R. 
Penrose, in [D.W]). 

"In particle dynamics the dynamical object 
is not x and t, but only x... This understood, how 
can physicists change their minds and "take back" 
one dimension? The answer is simple. A decade and 
more of work by Dirac, Bergmann, Schild, Pirani, 
Anderson, Higgs, Arnowitt, Deser, Misner, de Witt 
and others has taught us through many a hard knock 
that Einstein's geometrodynamics deals with the 
dynamics of geometry: of  3-geometry, not 4- 
geometry." (J.A.Wheeler, in [D.W]). 

Let us sum up the results of the previous chapters. Each elementary system, in the 
Wigner sense, has been attributed a position operator. For spinning elementary particles 
(in particular, the stable ones: proton, electron, neutrino, photon), the components of this 
operator are not commuting. In support of such an operator, we have obtained the three 
following arguments: 
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a) every particle has a position operator; therefore, it makes sense to speak of a 
coordinate measurement even for massless particles; 

b) the electron slit experiment has a pure quantum interpretation in the standard 
statistical description of quantum mechanics; 

c) in the non relativistic limit, that is for low momenta, the spin-orbit coupling 
comes out from the replacement of the Schr6dinger operator X by the new one R. 

Up to now, we have only proposed to give up the old Schrrdinger position 
operator and to replace it by a more sophisticated one. We could be satisfied by this point 
of view and declare that it is the end of the story. Unfortunately (or fortunately) this is not 
possible because many conceptual difficulties are still present and it is somewhat easy to 
see that adopting our new operator has very many important consequences 1. In 
particular, since it is impossible to measure a sharp position for a stable particle, it 
becomes difficult to build Minkowski space-time from the set of quantum states of the 
photon; in other words, there is no way to rediscover the X operator from the Bias D 
operator. However, we are authorized to think that in a world where we only have 
photons, we must be able to obtain a description of Minkowski space-time for the same 
reason Einstein was able to build it from light signals. In this context we have already 
underline that Einstein ignored in his construction the transverse character of light waves, 
a property which is at the origin of the non localizability of the photon (both in the 
Newton-Wigner-Wightman sense and in the sense we have adopted). The necessity of 
being able to build space-time from quantum physics is completely in the spirit of 
quantum ideas; as says Wigner: "Quantum mechanics  told us that we  should describe 
situations or events only in terms o f  quantities that can be observed"[Wig3]. This implies 
that we have to use quantum observables and, especially in this case, the operator D. 

Then we are led to bring into question the reality of Minkowski space-time itself, I 
mean as an ingredient of quantum physics. The paradox is that Minkowski space-time is 
intimately related with covariance, that is with the Poincar6 group and it is the Poincar6 
group which led us gradually to consider seriously the question of giving up the 
Minkowski space-time. Moreover, the conservation of energy-momentum, which is a 
byproduct of  the Poincar6 group invariance, is so well satisfied that none particle 
physicist would be ready to give up the Poincar6 group 2. 

1as announced by Wightman:"/venture to say that any notion of localizability in three-dimensional space 
which does not satisfy [my axioms] will represent a radical departure from present physical ideas'[Wig]. 

2SchrOdinger considered the possibility of giving up the Poincar6 group: "/l apparatt donc qu'au point de 
vue de la mdcanique quantique, la thdorie de la relativitd se range au m~me niveau que la mdcanique 
classique en ce sens qu'elle ne reprdsente qu'une approximation relative au domaine macrocospique. On ne 
devra pas admettre tout simplement les formules de la relativitd (par exemple les formules de Lorentz) et 
les supposer valables sans changement dans le domaine intra-atomique. Elles devront dtre soumises d des 
modifications qui seront probablement analogues g~ celles qu'a subies la mdcanique ordinaire pour se 
transformer en mdcanique quantique, ll faudra "quantifier" la transformation de Lorentz"[Sch, vol.3, 
p.417]. One of the arguments of SchrOdinger is the fact that Einstein clocks must be infinitely heavy if 
we want them to provide us with a sharp measurement of time. 
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Fortunately, there is no contradiction in keeping the Poincar6 group and the linear 
energy-momentum space and rejecting simultaneously the Minkowski space-time. These 
two four dimensional spaces are quite different, both from physical and mathematical  
point of  view. We give, in Table 1, the main differences between these two spaces. 

Minkowski spa?e Energy-momentum s, pac~ 

- Homogeneous  space 
(all points are "equal"). 
The Poincar6 group acts transitively on 
this space. 

- Affine space. 

- can be identified with the quotient 
Poincar6/Lorentz.  

- Dimension: length. 

- Elements appear as dummy variables 4 
in QFT calculations where they loose 
their space-time meaning 5. 

- The only use in QFT lies in writing the 
locality of  the interaction Lagrangian. 

- Not homogeneous. 

The Poincar6 group acts on orbits (mass 
shells). 

- Vector space. 

- Dual of  the translation subgroup. 3 

- Dimension: action/length. 

- Conserved quantities (easily measured 
since transferable to apparatuses). 
They are also additive quantities 6. 

- All calculations of Feynman diagrams 
are made in this space 7. 

T a b l e  1 

One is tempted to say that the role of  Minkowski space was essentially a historical 
one, in contradistinction to the energy-momentum space which is fundamental in particle 
physics. The two spaces are so intimately related (or sometimes identified!) in physicist's 

3It could also be considered as a subspace of the dual of the Lie algebra of go. 
4They are just integration variables in the action integral. 
5as underlined by Sakurai:"It is important to note that the x and t that appear in the quantized field A(x,t) 
are not quantum-mechanical variables but just parameters on which the field operator depends. In 
particular, x and t should not be regarded as the space-time coordinates of the photon'[Sak,p.32]. 

6Very often, people fail to tell the difference between "conserved" and "additive". Since the energy- 
momentum of an isolated system is conserved, its mass, which is a function of the energy-momentum, is 
also conserved. However, the mass is not additive. 
7Mandelstam variables are functions of the energy-momentum, a picture in a bubble chamber is analyzed 
in this space, etc. 
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minds that a real effort is needed to convince oneself that it is possible to give up only one 
of them. That Minkowski space-time is not satisfactory for the particle physicist is very 
often underlined as we are going to show 8. First, as underlined by Schwinger, 
Minkowski space-time is probably responsible of the divergences of QED : "We conclude 
that a convergent theory cannot be formulated consistently within the framework of 
present space-time concepts" [Schwl, preface]. But the main conceptual difficulty lies in 
the contradiction between the localizable field and the non lOcalizability of particles. Let 
us examine this point. 

"A localizable dynamical variable is a quantum-mechanical operator which 
describes the physical conditions at one particular point x in space and time". Every 
quantum field theoretician would agree with that definition taken from Jauch and 
Rohrlich's textbook[J.R]. The problem is that if we want to analyze further this notion, 
we are readily led to contradictions. Indeed, the same authors write: "A localizable 
dynamical system is one for which a complete set of localizable dynamical variables 
exists. Thus, for instance, a system of  point particles is a localizable system, the 
local&able variables in this case being the position of  the particles and their spin, if any". 
We readily see that the concept of a localizable dynamical variable is in complete 
contradiction with the Newton-Wigner result about the photon and the neutrino. 9 
Schwinger is aware of the difficulty since he writes: 

"A localizable field is a dynamical system characterized by one or more operator 

functions of  the space-time coordinates, ~a(x). Contained in this statement are the 
assumptions that the operators Xm, representing position measurements, are 
commutative, 

[Xm, Xn ]= O, 

and furthermore, that they commute with the fie M operators, 

[xm, Ca]= 0, 

so that 

(x I¢O~x3 = &x-x3 ¢a(x). 

The difficulties associated with current field theories may be attributable to the implicit 
hypothesis of  localizability"[Schw l, p.343]. 

Do not we have to conclude with SchrSdinger: "Mais l'espace gdomgtrique est une 
crdation de notre imagination, qui s'est ddveloppd par et pour l'usage de la vie de tousles 

8I was surprised to read in [Dre, p.211]: "Bohr's main conclusion from the failure of the BKS theory was 
that a profound, radical revision of all the physical concepts had now become inevitable. Only by a 
complete renunciation of the usual space-time methods of visualization of the physical phenomena would 
further progress become possible. The impossibility of maintaining the usual causal space-time 
description was a recurring theme in Bohr's thinking; it eventually culminated in the complementary 
formulation of quantum mechanics". Do we have to conclude, from this source, that Bohr also was not 
satisfied by Minkowski space-time? 
9From our point of view, the concept of a point particle is even meaningless, at least if it is spinning. 
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jours. II n'est nullement sar que la nature possdde les propridtgs de cette construction 
mentale"[Schl, vol.4, p.370]? 1° or to say, as Wigner, "How can space-time points be 
defined? This is a difficult question...I believe our present idealized space-time concept 
will undergo modification"[Wig3 ]. 

"What is the significance of the variables x#...? A priori there is no reason for the 
x#'s to have anything to do with space and time." [K.W]. This is probably a little too 
drastic as a statement, but it is significantly a proof that many physicists are troubled by 
the meaning of the x#'s. Many people would agree that they are just labels (what are they 
labelling?). Less are aware that they are just dummy variables. We have to accept the 
inevitable fact that they do not correspond to quantum observables. Their link to space 
and time is rather mysterious and it is not natural to accept such a situation without trying 
to understand it; my deep conviction is that there must be a way to derive the classical 
Minkowski space-time from quantum field theory and not the converse as we are taught 
by quantum field theory. One could be tempted to object that time, in contradistinction 
with position, is not an observable but just a parameter in ordinary quantum mechanics 
and that nobody complains about it. That is not true. As Schrrdinger emphasizes it, time 
is measured ; a time measurement answers the question: "what time is it now?"11 

The impossibility of measuring simultaneously the three coordinates of a particle 
has another important consequence: the quantization procedure looses completely its 
value. The quantum observables Ri we have introduced have commutation relations 
which have nothing to do with the Poisson brackets of classical mechanics. The path to 
follow from classical to quantum mechanics has necessarily an intermediate step 
corresponding to some modification of  our concept of  space. Another important 
consequence is that if we accept the impossibility of quantizing worldlines (one- 
dimensional submanifolds in Minkowski space-time), we could not see, afortiori, why 
we would be authorized to quantize strings which are two-dimensional submanifolds. 
This remark makes highly improbable the possibility of understanding strong interactions 
with the aid of quantum strings. However, it is interesting to mention that the R operator 
introduces an effect which reminds strings. Indeed, there are situations where we are able 
to measure with a quite good precision two of the three coordinates of a particle; in such a 
xase, due to the uncertainty relations, the third coordinate has a very fuzzy value and the 
particle looks like a string but keeps its usual number of degrees of freedom. Of course, 
in order to look like a string, we must have sharp values of two coordinates, a condition 
which depends on the spin state of the particle. 

Another remark is of  interest: since, according to our proposal, a spinning particle 
does not have a classical point image, it can be expected that this property will permit to 
escape the infinity of  the self-energy of  the particle. This could be counted as a fourth 
argument in favour of our position operator. After all, the notion of point in a continuum 

10It is paradoxical that SchrOdinger who was strongly in favour of the fundamental role of the wave 
function - a function on the ordinary space! - was ready to give up this object. 

11Th e reader will convince himself that such a question corresponds to a situation where we have really 
two clocks, one for the measurement, the other for defining "now". I hope the reader will forgive me not 
to enter the problem of time in the quantum theory of measurement: everybody knows that any 
measurement takes time... 
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iis intimately related with the notion of infinity (how to define real numbers without the 
concept of infinity?); it is not surprising that divergences are present when point particles 
are welcome 12. 

We have mentioned in Table 1 that the only role of space-time variables is to write 
the locality of interactions. That it is true can be seen in the following way. Suppose that 
we are interested in a system of photons, electrons and positrons. As far as these particles 
are not interacting, we have no need of field theory: we start with the Hilbert spaces of 
the one photon (resp. electron or positron) states; they are just given by the representation 
spaces of the Poincar6 group, i.e. without the help of Minkowski space-time; then, with 
the only aid of the tensor notion, we build the Fock spaces associated with the 
corresponding "fields" without using the notion offield 13( space-time is not involved in 
such a construction); then we introduce the annihilation and creation operators with the 
usual commutation or anticommutation relations; if the "fields" are not interacting, the 
Hamiltonian is just given by the generator of the time translations of the Poincar6 group, 
an operator which is known since we started with the representations associated with 
each kind of particles. If the "fields" are interacting, we have to choose a Hamiltonian in 
terms of the creation and annihilation operators. The locality of interactions is obviously a 
way of making a selection between all possible lagrangians but the interaction term is 
directly taken from classical physics although we are in the so-called second quantization 
procedure. It is strange that we  do not take into account the position operators appearing 
in the first quantization part of the theory. We must also underline that in first 
quantization, position and time do not play analogous roles since one is an operator, the 
other one is just a parameter. It is surprising that in the next step (second quantization), 
we go back to the classical situation with the four x# as parameters! Do we really believe 
in what we are teaching, namely the existence of a position operator? Moreover, as it has 
been emphasized by Connes, what is the value of the locality of interactions requirement 
when it is really forgotten after the renormalization of the theory? 

It is possible to quote other people about conceptual difficulties encountered in 
quantum field theory. For instance, "Field theory works fine for free fields but the ideas 
don't seem to carry over very well for the interacting case"[ Sta] or, from the same author, 
"A(x) that first appears in Lagrangian field theory.., is defined for points x rather for 
wave packets of freely moving particles. This original A(x) is found to be a rather 
unsatisfactory object because its matrix elements between physical states are all zero. 
Thus it is multiplied by infinity and one gets the renormalized field..." 

The reader would have understood that I am trying to convince him to give up the 
Minkowski space-time and, consequently, the notion of quantum field defined on it. The 
problem is of course to find a substitute for the field concept; my opinion is that space- 
time must be quantized in some way. If I am right, that could imply that the gravitational 

12It is really surprising that many authors are referring, in books on quantum mechanics, to point 
particles. They are usually very prudent in not trying to make this expression more precise. Speaking of 
point particles supposes implicitly that our apprehension of microscopic structure of space is quite clear. 
Obviously, it is not. 
13It would be nice to propose a new name for a "field" which does not refer to a continuum.I keep the 
word field between quotation marks. A possible name would be a Fockfield. 
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field has no quantum equivalent and that would explain why it is so difficult to quantize 
it. After all, up to now, this field is known as a macroscopic  field and quantum 
mechanics describes essentially microscopic phenomena. 

We have to underline that our position operator was defined for a free particle. 
However we have used it in the SchrOdinger equation and obtained the spin-orbit 
coupling. I must explain why I do not have to do the same thing in the case of the Dirac 
equation with an external potential. It is not enough to say that the spin-orbit coupling is 
directly obtained with the use of the standard potential V(X). Introducing a potential in 
the Dirac equation is highly not natural. It would imply that we are considering this 
equation at the first quantization level. Clearly, the Schr6dinger equation is the quantum 
equivalent of  the classical equation of motion of a Hamiltonian system; we do know the 
role played in this framework by a potential; the situation is quite different in classical 
special relativity where there is no room for potentials. This is well known but, 
nevertheless, we know - and it is a miracle - that the Dirac equation provides a rather 
good approximation for the hydrogen spectrum 14. Let me emphasize once more what 
were the concepts introduced by special relativity: the Poincar6 invariance and its 
corollary, the conservation of energy-momentum; the Minkowski space-time is unable to 
describe interactions between particles. 

Before concluding, I would like to invite the reader to meditate a recent article by 
Wigner [Wig3] from which I extract the following text which has the advantage to 
enlarge the problem in including general relativistic aspects: "How can space-time points 
be defined? This is a difficult question and, as we will see, it also plays an important role 
outside the general theory of  relativity. But in general relativity, it is a basic question. 

"In classical theories, space-time points are best defined as crossing points of  the 
paths of  two objects - naturally infinetely small ones. And in general relativity, it is 
implicitly assumed that there are infinitely many such very light objects, so that the 
intersections of  their worldlines define a sufficiently dense set of  space-time points. This 
is, evidently, a very wild assumption and one must admit t/tat tile general relativity theory 
is not really positivistic. 

"The situation is worse in quantum mechanics. The objects have no paths and the 
coincidence of  two is not defined- there is no "point of  collision." The collision matrix, 
which can be determined by many repeated experiments, does not define the point of  
collision. It is" implicitly assumed, both in general relativity and in quantum mechanics, 
that there are macroscopic measuring systems which enable the determination of  the 
coordinates of  spce-time points, but the influence of  these systems on the systems under 
observation can be neglected. Altogether, as will be discussed further, the real existence 15 
of  space-time points and the possibility of  determining their coordinates is an assumption 
both in general relativity theory and in quantum mechanics - particularly in the field 
theories of  the latter - but is very questionable in both. I believe that even the probability 
of  the system's particles to have given positions at definite t#~les is not determinable - the 
magnitude of  the field strengths at a space-like surface even less. The point will be further 
supported below. Its realization will, I believe, fundamemally change our quantum 

14under a strange condition: we have to replace the electron mass by the rcduced mass, a concept which 
has no room in special relativity! 
15That is probably the only reference to a metaphysical question in the prcscnt book. 
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mechanics and probably all fundamental concepts of our physics." 

I arrived at the end of this work. It is probably clear to the reader that if I was able 
to write the "next chapter" of my book, I would have written it. This does not mean that I 
do not know in which direction I have to look in order to go further. Let me say a few 
words about that. If we give up the Minkowski space-time as a continuum, it does not 
follow necessarily that-we have to replace it by a discrete object. That would lead us to 
the desertion of the continuous Poincar6 group which is, as I underlined it, a very useful 
ingredient for particle physics. The mathematicians taught us that all information 
concerning a manifold can be obtained from the study of the functions on it 16. These 
functions form a commutative algebra. Conversely, given any (not necessar i ly  
commutative) algebra, one can associate with it a (not necessarily "commutative") 
manifold. There is a possibility that our space-time is such an object... 

A last comment is necessary. In all chapters, I was essentially concerned with the 
notion of  space alone. What about time? From Newton-Wigner's results, we know that it 
is not possible to find a position operator having the Lorentz covariance property 
(remember, for instance, that a state cannot be a localized one for two distinct observers). 
But, even if such an object was possible, it would be difficult to conciliate the operator 
character of the position with the parameter character of time. It seems more natural to 
accept this difference as an a priori fact: first, let us understand space... 
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A P P E N D I X  A 

SYMPLECTIC STRUCTURE OF COADJOINT ORBITS. 

Let G be a Lie group and G its Lie algebra. We denote by G* the dual vector space 
ofG. Ifx, y ~ G a n d f ~  G*, we have 

< coad(y)f, x > = < f, ad(y) x > = < f,  [x, y] > 

Denote by Gfthe Lie subalgebra stabilizing f; then G~ Gf i s  the tangent space to the 
coadjoint orbit and the symplectic form is, for X, Y ~ G~ Gf ,  

(X, Y ) f=  < f ,  [X, Y] > 

which is clearly antisymmetric. 
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A P P E N D I X  B 

QUANTIZATION OF THE SPHERE S 2. 

The principle of the quantization procedure is the following one. Given a symplectic 

manifold M with cr as a symplectic form l, one considers a covering of M by simply 

connected open sets Mi such that the restrictions cYi are integrable: tYi = d @  (d denotes 
the exterior derivative) and satisfy the compatibility conditions: 

t~i (dx) - fiYj (dx) = dzij / i zij 

The symplectic form of S 2 can be written as a mixed vector product: 

Cr#v(r) dr # & v  = ~ (r, dr, t~r) 

where ,~ is a given real positive number. By performing a stereographic projection from 

North (e = I) or South (e = -1) pole, we get 

x = ( l+c t  2 +f12)-I 2ar ,  y = (1 + a  2 +fl2).1 2fir, z = e(1 + a  2 +fl2)-1(1 - a  2 _f12) r 

A simple calculation shows that 

or= 4eA(l+o:  2 +fl2)-2 daAd f l  = 2 e A d [ ( l  + a  2 +f l2) - l (adf l - f lda)]  = dtiIe 

The stereographic projections map two open sets (the Northern and Southern 
hemispheres) on R 2. The quantization condition reads: 

tY+ - tY_ = dz/ iz 

which gives by integration 

1If x denotes a point of the manifoldM, we have an antisymmetric tensor field tr#v (x) = - Crv#(X) 
satisfying det tr#v ¢= O. 
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z = zo exp(2iA¢), ((~ is the longitude) 

Therefore 2& is an integer. 

B i b l i o e r a ~ h v  

[Sou2] J.-M. Souriau, Structure des systdmes dynamiques (Dunod, Paris, 1970). 
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A P P E N D I X  C 

THE ANGULAR MOMENTUM OF AN ELECTRIC CHARGE 
IN THE MONOPOLE FIELD 

(AN APPLICATION OF THE NOETHER THEOREM). 

Let us consider a classical point particle of mass m and electric charge e in the field 
B of a monopole with magnetic charge g. We have 

r 
B(r) = g -~ (C,1) 

We denote by A(r)  the vector potential (necessarily singular) defined by 

B(r)  = g curl  A(r )  (C,2) 

(we put the factor g for convenience). 

The Hamiltonian of the problem is 

H(r ,p)  = (p - egA(r) )2  
2m (C,3) 

and the Lagrangian reads 

L(r,v)  = ~ mv 2 - egA(r) .v  (C,4) 

Since the field (C,1) is invariant under rotations, Noether's theorem will provide us with 
a conserved angular momentum. To get its expression, we perform an infinitesimal 
rotation around the third axis: 

& = -y~, 

= 

&x = -  rye  

6Vy = Vx~ (C ,5 )  

8z = O, &z = 0 
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We get 

8L(r,v) = - eg( ~ x  & + - ~  ~y)Vx 

- eg(-~x & + - ~  Sy)Vy (C,6) 

,aAz ,. dAz - - eg(--.~- ox + ~ 5y)vz 

- eg( a x OeVx + Ay OeVy) 

In using Eqs(C,2) and (C,5) alone ( that is without any explicit expression of the vector 
potential), we obtain easily 

d A z 8L(r,v) = egdp~(  xY - Ayx -  7)  (C,7) 

and the Noether conserved quantity is given by 

dL cgL 
dpJz = ~ x  & + ~j~y Sy + egdp (Axy - ayx . z) (c,8) 

o r  
r 

J = r x (y - egA) -  eg 7 (C,9) 
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APPENDIX D 

NON LOCALIZABILITY OF THE CLASSICAL 
MASSLESS PARTICLE WITH HELICITY.  

In the present appendix, we want to show that the non localizability of the massless 
particle with helicity is only due to special relativity, without the use of quantum theory. 

The problem is to define a wordline for a classical particle which has energy- 
momentum P# and generalized angular momentum M#v such that the Pauli-Lubanski 
vector Wp obeys 

W# = s P#, (D,1) 

where s is the (non zero) helicity. Due to the orthogonality of the 4-vectors P and W, Eq. 
(D,1) implies that these vectors are light-like and, therefore, that the particle has zero 
mass. This equation has a non covariant writing. Denoting by J and -K the "magnetic" 
and "electric" parts, respectively, of the tensor M#v, we get 

WO = J . P = s Po 

W = P o J - P x K = s P  

(D,2) 

(D,3) 

Let us decompose the angular momentum J in transverse and longitudinal parts 
with respect to P: 

J = ,Ill + J J- (D,4) 

Eqs (D,2) and (D,3) give 

s =Jr/ (D,5) 

POJJ_ = P x K  (D,6) 

In order to associate a worldline with the generalized momentum (Mtzv, Ptt), we 
. . . .  " " 1 - -  ,1 have to perform a translation whach would provide Mpv w~th some canomca property, 

as it is the case in classical mechanics: the angular momentum of a point particle is 
minimum (zero) with respect to the point where the particle lies. Under a space translation 
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T, the angular momentum J transforms in the following way 

J --+J - T x P  (D,7) 

It follows that we can choose T in order to cancel the transverse part of J. A translation 
has no effect on the longitudinal part (in fact, we know that s is an invariant). In that 
case, Eq. (D,6) shows us that K is collinear to P. These results can be written 

P 
J = s "n-z_ (D,8) 

r o  

K = a P (D,9)  

Now, it is clear that a time translation permits to cancel K (but does not affect J). 
What we have shown is that there is a point in Minkowski space-time for which K is zero 
and J collinear to P. This point is not unique since any light-like translation in the P~z 
direction provides us with another point with the same property. In fact, we get in this 
way a whole (light-like) worldline of such points. It is natural to consider this line as the 
canonical worldline of the particle. Unfortunately, we are going to show that there is an 
infinite number of such worldlines! 

Let us perform a boost of speed v (we choose c = 1). Denoting by T, as usually, 
the quantity (1 - v2) -1/2, the transformation formulas for the relativistic momenta 
associated with the Poincar6 group read 

p[~ = ~tpo_ ~tp .v 

P ' =  P" ~'Po v + ~2 (v.P )v 
1 + ~ '  

J '  = J + ~ v x K -  ~ v x ( v x J )  
1 + ~  

(D,10) 

K ' = K -  7 v x J -  
1 + 7  

v x  ( v x  K)  

(the two last formulas are the well known transformation formulas for the electric vector 
-K and the magnetic vector J). 
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Let us consider the case where (D,8) is satisfied and K vanishes. We have, for 
instance, 

P o = p  

P = (0, O , p ) , J =  (0, O, s), K = (0, O, O) 
(D,11) 

According to our hypothesis, this means that the particle is located at the origin. 
First we note that, if we boost along the third direction, we can make p as small or as 
large as we want, without modifying J and K. 

Let us now perform a boost of speed v in the first direction. 

v=(v ,O,O)  (D,12) 

Weget 

P ~ = ~ p  

P" = ( -~v ,  O, p), J" = (0, O, ~s), K'  = (0, ~vs, O) 

(D,13) 

The Lorentz transformation does not preserve our requirement about Eq.(D,8) and the 
vanishing of K. This is a very serious disease since the Lorentz transformation is not 
sufficient to provide us with the worldline of the massless particle 1. In order to reach the 
required conditions, we have to perform an extra translation 

T" = (0, p-lvs, O) (D,14) 

Such a translation does not transform P; nor P '  but gives 

J" ~ J '  - T'  x P '  = (0, O, s) 

K" ~ K -eS r ' =  (O, O, O) 

(D,15) 

Eq.(D,15) proves that the trajectory is shifted in the second direction. The shift p-lvs is 
as large as we want since, as we already noted, p is arbitrary small. It follows that if, for 
one observer, the particle is located on the earth and moving towards the polar star, there 
always exists an observer who will locate it near a star located, say, in a zodiac 
constellation. We must emphasize that this paradoxical result is obtained in the 
framework of classical special relativity alone and is due, for the photon, to its spin, that 

lit is however sufficient for a spinless particle (with or without mass). 
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is to the transverse character of Maxwell waves. The non localizability of the photon is 
not a specific result of quantum relativity. 

The reader is referred to the one given in Chapter 3. 
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APPENDIX E 

THE MAXWELL EQUATIONS AND THE POINCARE GROUP. 

In the present appendix, we want to relate the Maxwell equations with the Wigner 
work on projective representations of the Poincar6 group. We intend to present two 
versions of it, one concerning the field itself, the other concerning the potentials. In both 
cases we will see that what is involved is a representation of the w h o l e  Poincar6 group 
(i.e. with parity and time reversal). 

1. The electromagnetic field. 

If we define F as the complex field B -i E, we know that the Lorentz group acts as 
the complex rotation group. More precisely, any Lorentz transformation is uniquely 

factorized in a product of a rotation by a boost. A rotation of angle O around a unit vector 
u is given by 

F '  = F + sin O u  x F  + (1- cos O)u x ( u  x F )  (E,1) 

and a boost of speed v is given by the formula 1 

F '  = F - i y v  x F - v x (v x F )  (E,2) 
1+~ 

where 

?g = ( 1 -  v2) - 1 (E,3) 

It is a simple matter to check that the similar formulas (E,1) and (E,2) are complex 
rotations since both preserved the "square length" F 2, that is the real part B 2 - E 2 and the 
imaginary part 2B.E .  This shows that the complex rotation group S 0 ( 3 , C )  is isomorphic 
to the Lorentz group. This action is the "spin" action. 

The generators of S 0 ( 3 , C )  are the matrices 

1Eq.(E,2) is the same as the one obeyed by J +/K of Eq.(D,10). 
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ooo) 
S1 = 0 0 -i 

O i O  

(!0 i) 
$2= 0 0  

O 0  (oo) 
$3 = i 0 0  

0 0 0  

(E,4) 

for the real rotations and iS1, iS2, iS3 for the boosts 2. 

We already mentioned that electrodynamics is a theory which has the whole 
Poincar6 group as an invariance group. Under parity, the vectors B and E transform as 
follows 3 

Parity: B --4 B, E ~ - E. (E,5) 

In order to implement parity, we have to double the number of  components of  the field 
since F is transformed into F*.  The "spin" generators of  the Lorentz group become six 
dimensional matrices, namely, 

( S i  0 ) ( iSi  0 ) 
.Si = Si iF5,Si = 0 -iSi (E,6) 

where the matrix 1"5 is defined by 

F5= (10 . ; )  (E,7) 

2The group S0(3,C) is a three dimensional complex group generated by the three matrices Si; however, 
as a real Lie group, it is six dimensional. 
3Under time reversal, we have B ---) - B, E ---) E, the doubling is also necessary. 
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We note that the parity matrix FO reads 

( 0 / )  

FO= 1 0  

If we add the orbital and the "spin" generators of the Poincar6 group, we get 

J = - i x × V +  Z 

0 
K= - it V- ix  ~ + iFsX 

(E,8) 

( E  , 9 )  
P = - i V  

These generators describe the action of go on any three dimensional vector field. We are 
going to show that if we want such a field to correspond to a massless representation of 

~ ,  it will obey necessarily Maxwell equations and its helicity operator will have + 1 as 
eigenvalues. 

The Pauli-Lubanski vector has components 

wO= J . P =  • .V 

W = J H  + K × P = i Z ~ +  F s × V  

(E,10) 

We note that W 0 is, up to an i factor, the curl operator 4. 

We want to select a massless representation of helicities 2~. According to Wigner's 
results, we have to impose the conditions 

W#- s Fs P# = 0 (E,11) 

which means 

4This writing shows that the curl operator is a scalar operator in Racah's terminology, since it commutes 
with J. 
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( Z . V  + s F5  ~ )  • = 0 (E,12) 

( Z ~ -  i F s Z  ×V + s F 5 V )  ¢ =  0 (E,13) 

where • is a six components field collecting F and F*. 

.OF 
Eq.(E,12) is just curl F - ls--~--= 0 and its conjugate. Eqs(E,13) are not all 

independent. They are compatible provided s 2 = 1 (which implies that Eq.(E,12) is a 
Maxwell equation) and they contained the other Maxwell equation div F = O. 

The introduction of the F-matr ices  makes explicit the analogy between Maxwell 
equations and the Dirac equation 5. In particular, one can write the Lorentz invariants with 
the help of them. 

2. The four-vector potential. 

We can do the same kind of calculation on the four vector potential AtL(Xv) 
(defined up to a four divergence, a fact which is not difficult to work out, as we will 
see).The action of the Poincar6 group is given by 

Marl = i(xaOfl-x[JOa) + Zafl 

P a = ic)a 
(E,14) 

with 

( Xafl) az = i ( g flr g aa  - g fla g ar) (E,15) 

The Pauli-Lubanski vector is 

Wu = ½ euva~,r,a# Ov (E,16) 

In order to select a representation of mass zero and helicity s, we must write 

( W # -  s PP)azA T = Oct All (E,17) 

(the r.h.s, is a four divergence, required by the gauge property. In writing zero, instead, 
we could not select the expected representation). Eq.(E, 17) reads 

5See H. Bacry, Nuov. Cim. 32A, 448 (1976) for more details. 
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ettWCrc)vA ~ - i s 3PA (r = Oa A #  (E,18) 

This equation implies that the vector.t; u = A# + i s A# obeys 

oqUfa+ o~r3~ u = 0 and oXronaj;u = 0 (E,19) 

The last relation (no summation on the index cr) implies thatfl ~ is of  degree one in the Xv. 
It follows that its derivatives are constant; finally, we get 

F#v  + is F~v  = q~Uv (E,20) 

where ~tv  denotes a constant field. In taking the dual of  (E,20) and eliminating FFz v , we 
obtain 

( 1 -  s 2) Vuv  = O#v-  is OIZv (E,21) 

Since we are not interested in a constant field, we must take s 2= 1 (as expected) and take 

the constant field O equal to zero. Eq.(E,20) must be understood as a first order 
differential equation concerning an eight dimensional object, since s is an operator with 
two eigenvalues. The eigensubspaces are associated with selfdual and antiselfdual 
tensors, respectively. This eight component field has A O, A 1, A 2, A 3, A O, -A 1, -A 2, - A 3 
as components. 
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APPENDIX F 

THE ZITTERBEWEGUNG. 
THE PRYCE-FOLDY-WOUTHUYSEN TRANSFORMATION. 

Let us define the following operator herafter called the sign of energy. 

F = sgn H = E - 1 H -  
a.p + mflc 

~[p2+m2c2 
(F,1) 

F 2 = I (F,2) 

where I denotes the identity operator and E is the positive operator 

E = II-lq = ~[p2c2+ m2c 4 (F,3) 

Schr6dinger notes that every observable A can be written in a unique way as a sum 
of  an even and an odd part as followsl: 

A = A + + A- (F,4) 

A+ = 1 (  A + FAF) which commutes with F (F,5) 

A- = 1 (A - FAF) which anticommutes with F (F,6) 

His idea is to apply this decomposition to the usual position operator X; its even 
part XS has the property of  satisfying the required evolution equation: 

d X s  
dt - i [H,Xs] = H-lp (F ,7)  

1The operator F permits to define the projections P+ (resp. P_ )onto the positive (resp. negative) energy 
subspaces by the relations: 

P+_=I ( I +_F) 
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instead of 

dX 
= i [H, X] = c a  (F,8) 

which is difficult to accept physically since it implies that the measurement of any speed 
coordinate leads to one of the two following values: + c. 

Schrrdinger considered the operator XS as describing the mean position of the 
electron, the difference X -  XS = ~ corresponding to an oscillatory movement (the 
zitterbewegung). The amplitude of this motion is quite small; its order of magnitude is the 

Compton wavelength, and the period is h ' ~ - .  A simple expression of ~ is given by 

= -i ~-~ [F, a ]  (F,9) 

A simple way to show the properties of X S and ~ is to use the Dirac evolution 

= operator, If we choose discrete values of time t n n E ' we obtain 

X(tn) - X(O) = tn c2H-lp (F,10) 

It is interesting to describe the X decomposition with the aid of the transformation 
introduced by Pryce [Pry] and which was generalized by Foldy and Wouthuysen IF.W]. 
It is the unitary transformation which maps the operator F onto fl (they have the same 
spectrum, with the same multiplicities of the eigenvalues). Since in the Dirac 
representation, fl is diagonal, the P.F.W. transformation is, in this representation, a way 
of diagonalizing F, the sign of the energy. Equivalently, it is a way of reducing the 
representation of the Poincar6 group. This unitary transformation is given by 

~ m ~ + E  ] + flF (F,11) U =  2 

It is a simple matter to verify that 

ill? + F fl= 

U2 = 3F 

2mc 2 
E 

(F,12) 

(F,13) 
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and the planned result 

UFU + = fl (F,14) 

It is interesting to examine how the generators of the Poincar6 group are 
transformed by the P.F.W. operator. We have 

UHU + = fiE (F, 15) 

UpU + = p (F, 16) 

lf¢7 
UJU + = J where J = X x  p + 2 (F,17) 

UKU + = U(HX + i ~ U  + 

Kcecr× P (F,18) 
= flEX + ifl ~ E -  fl 2(E+mc 2) 

and it is easy to check that all these operators have a diagonal block matrix form in the 
Dirac representation, which correspond to an "even" form. If we compute UXU +, we 
obtain 2 

~ x p  
UXsU + = X - K¢g 2E(E+mc2 ) (F,19) 

fl(  a . p  )p 
U~U + =- iKc2-  ~ itfd'2E2(E+mc2 ) (F,20) 

2The spin operator s of Chapter 6 cannot be confused with the operator / h'cr. The link between the 

two is given by the relation 
o" s = I ~ - +  (x- q) xp 

where q denotes the Newton-Wigner operator for the Dirac particle. Note that x and q are related by the 
formula x = UqU +. The reader is also invited to compare Eqs (F,19) and (6,8). 
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O U O T A T I O N S .  

Page 9, Arago (footnote 3): Two close radiating points, placed on the same 
vertical line are flashing opposite to a rotating mirror. The rays issued from the upper 
point are forced to travel through a tube filled with water before reaching the mirror; the 
rays issued from the lower point reach the reflective surface after a path in a single 
medium: the air. To be more concrete, we will suppose that the mirror, seen from the 
observer position, is rotating from right to left. Then, if emission theory is right, if light 
is matter, the upper point will seem to be on the left with respect to the lower point; on 
the contrary, it will seem to be on the right if light results from vibrations of an ethereal 
medium. 

Page 9, Foucault  (footnote 4): There is no longer any doubt about the true value 
of the celerity of light in the vacuum or in our atmosphere. About the speed adopted by 
light when it penetrates refringent media, it was only given by the calculation which, in 
interpreting refraction in the emission system or in the wave system, was giving, 
accordingto the chosen hypothesis, completely different results. M. Arago, as early as 
1938, was the first to recognize the importance of an experiment which, without 
leading to the exact measure of light celerity in different refringent media, would only 
set up their difference and, consequently, would permit physicists to know how to 
interpret refraction. 

Page 12, Einstein (footnote 10): A closer reflexion shows us that aether negation 
is not necessarily required by the special relativity principle. One is allowed to admit the 
existence of aether, but one has to give up the idea of attributing it a well defined 
motion, that is one has to strip the aether,by abstraction, of  its last mechanical character 
left by Lorentz.(translated from French.t). 

Page 51, Schr6dinger  (footnote 2):The negative eigenvalues [of the energy] have 
no physical meaning; one would like very much to rid of them. At least, it must be 
impossible that a "positive" eigenfunction would transform in course of time in giving 
birth to "negative" functions or at least this variation must be infinitely slow in order to 
make improbable the enormous change of energy 2mc 2 we have never observed. 

Page 54, Schr6d inge r  (footnote 2): It appears, from the point of  view of 
quantum mechanics, that the theory of relativity lies at the same level as classical 
mechanics in that it only represents an approximation relative to the macroscopic 
domain. One will not just admit relativity formulas (for instance, Lorentz formulas) to 
be valid without change in the intra-atomic domain . They will have to suffer 
modifications which will be probably analogous to the ones suffered by ordinary 
mechanics to transform into quantum mechanics. We have to "quantize" the Lorentz 
transformation. 

Page 56, Schr6dinger:  But the geometrical space is a creation of our imagination, 
which was transformed by and for the everyday life. It is not sure that Nature 
possesses this mental construction. 
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